

Sulfate

EQS data overview

Sara Sahlin, Marlene Ågerstrand

Department of Environmental Science and Analytical Chemistry (ACES)

ACES report number 14

Department of Environmental Science and Analytical Chemistry, Stockholm University 2018

Sulfate EQS DATA OVERVIEW

ACES report 14

Sara Sahlin, Marlene Ågerstrand

Department of Environmental Science and Analytical Chemistry (ACES) Stockholm University

Preface

The Department of Environmental Science and Analytical Chemistry (ACES) was commissioned, by the Swedish Agency for Marine and Water Management and the Swedish Environmental Protection Agency, to perform a literature overview and possible EQS derivation for the specific pollutant sulfate. The work was performed under the Water Framework Directive (2000/60/EC) using the European Communities's guidance document "Technical Guidance for Deriving Environmental Quality Standards".

The report was prepared by Sara Sahlin and Marlene Ågerstrand.

Stockholm, April 23rd, 2018 The Department of Environmental Science and Analytical Chemistry (ACES) Stockholm University

Förtydligande från Havs- och vattenmyndigheten

Havs- och vattenmyndigheten planerar att ta med sulfat bland de ämnen som regleras i Havs- och vattenmyndighetens föreskrifter (HVMFS 2013:19) om klassificering och miljökvalitetsnormer avseende ytvatten¹. Stockholms Universitet har därför på uppdrag av Havs- och vattenmyndigheten och Naturvårdsverket tagit fram beslutsunderlag för att kunna etablera bedömningsgrunder för sulfat. Utifrån litteratursökning och granskning av underlag har förslag på värden beräknats utifrån de riktlinjer som ges i CIS 27 (European Communities, 2011). I denna rapport har flera alternativa värden tagits fram utifrån olika beräkningssätt. Slutgiltigt val av värden att utgå ifrån vid statusklassificering har föreslagits av Havs- och vattenmyndigheten efter dialog med deltagare i en arbetsgrupp (representanter från Kemikalieinspektionen, Naturvårdsverket och Läkemedelsverket). Alternativ som baseras på probabilistiska beräkningar har förordats över värden baserade på deterministiska beräkningar, vilket är i linje med CIS 27. Granskning av vissa studiers tillförlitlighet och relevans har även diskuterats med deltagare i arbetsgruppen samt inkopplad forskningsexpertis.

I enlighet med detta föreslås för limnisk miljö **34 mg/L som årsmedelvärde och 73 mg/L som maximal tillåten koncentration.** Värdena är framtagna utifrån en probabilistisk beräkning och en "added risk" approach, vilket innebär att de har tagits fram för att man i samband med utvärderingen ska beakta naturlig bakgrundshalt om den annars hindrar efterlevnaden av värdet. Probabilistiskt beräknade värden för toxicitet vid olika vattenhårdhet har inte kunnat beräknas då det saknas data för dagsländor, den känsligaste organismen, vid lägre hårdhet. Det föreslagna värdet avser därför alla vatten oavsett hårdhet och är baseras på tester utförda vid lägre hårdhet än 100 mg CaCO₃/L, vilket speglar de hårdhetsförhållanden som normalt råder i Sverige. Maximal tillåten koncentration är baserat på studier som gjorts vid ungefär 100 mg CaCO₃/L, vilket är högre hårdhet än vad som normalt råder i Sverige. Detta motiveras genom att kortvariga toppar av sulfat ofta sammanfaller med koncentrationstoppar i hårdhet. Något värde för marin miljö föreslås inte.

Notera att bedömningsgrunder för sulfat ännu inte har beslutats.

¹ https://www.havochvatten.se/hav/vagledning--lagar/foreskrifter/register-vattenforvaltning/klassificering-och-miljokvalitetsnormer-avseende-ytvatten-hvmfs-201319.html

TABLE OF CONTENTS

1. METHOD CONSIDERATIONS	6
2. PROPOSED ENVIRONMENTAL QUALITY STANDARDS FOR SULFATE	9
3. MEASURED ENVIRONMENTAL CONCENTRATIONS IN SWEDEN	10
4. AQUATIC ECOTOXICITY OF SULFATE	11
5. ACUTE FRESHWATER TOXICITY	12
6. CHRONIC FRESHWATER TOXICITY	16
7. ADDED RISK APPROACH	23
8. IDENTIFICATION OF ISSUES RELATING TO UNCERTAINTY IN RELATION TO THE EQSs DEF	RIVED 24
9. REFERENCES	25
10. SUPPORTIVE INFORMATION – Ecotoxicity studies	27
11. SUPPORTIVE INFORMATION – Reliability and relevance evaluations	35
12. SUPPORTIVE INFORMATION – Added risk and SSD results	41

1. METHOD CONSIDERATIONS

Legal frameworks

The work was performed under the Water Framework Directive (2000/60/EC) using the European Communities's (2011) guidance document "Technical Guidance for Deriving Environmental Quality Standards".

Environmental Quality Standards (EQS) for pelagic communities were derived to cover long-term (Annual Average: AA-EQS) and short-term (Maximum Acceptable Concentration: MAC-EQS) exposure. Risks for benthic communities or secondary poisoning for pelagic biota or top predators were not addressed in the EQS derivation (not identified as potential receptors at risk).

EQS derivation

The EQS derivation was based on ecotoxicity data conducted with sodium sulfate (Na_2SO_4 CAS 7757-82-6). Other salts of sulfate were not included due to that the cation (e.g. K⁺, Mg⁺) may contribute to the toxicological response (Mount et al 1997). Ca₂SO₄ was not considered toxic, but is not as soluble as Na_2SO_4 (Mount et al. 1997) and are not frequently used in ecotoxicological tests.

The following databases were used when searching for data: Scopus, Web of science, Google Scholar, ETOX, Ekotoxzentrum, UBA, INERIS, RIVM, IRIS, UK TAG, OECD, USEPA. The following keywords were used: sulfate, sulphate, sodium sulfate, sodium sulphate* toxicity, ecotoxicity, aquatic toxicity, ecotoxicology, NOEC, EC10, EC50, LC50. The literature search was conducted in February 2017.

Due to time restrictions, reliability and relevance evaluation was only performed on a selected number of the ecotoxicity studies using the CRED evaluation method. The result from the evaluations can be found in table S4. The studies were scored as; R1 (Reliable without restrictions), R2 (Reliable with restriction), R3 (Not Reliable), R4 (Not assignable), C1 (Relevant without restriction), C2 (Relevant with restrictions), C3 (Not Relevant), C4 (Not assignable) (Moermond et al. 2016).

According to European Communities (2011), chronic values reported as LOEC and EC₅₀ and acute values reported as NOEC should not be included in the derivation of EQS. EC₂₀ values were divided by 2 and tabulated as NOEC. MATC values were divided by $\sqrt{2}$ and tabulated as NOEC. One value per species (and endpoint) was used in the derivation. In case of multiple values for the same species and the same endpoint (at approximately same water hardness and ionic composition of the test media), the values were aggregated (geometric mean). According European Communities (2011), toxicity values higher or lower than the range of test concentrations (e.g. $LC_{50} > x$ or $LC_{50} < x$) should not be used in the derivation. However, one EQS proposal was based on an effect data with lower toxicity value than the tested concentration (NOEC<x), since it suggests higher toxicity at softer water compared to other available data.

Several of the studies found in the literature investigate mortality as endpoint during long-term exposures (see supportive information, table S3). When comparing chronic studies to the mortality studies with long-term exposure, LC_{10} values for embryos of *P. promelas* (Wang et al. 2016a) suggest higher toxicity (382.05 mg/L) compared to data reported for larvae of *P. promelas* and endpoint growth, EC_{10} 760 (Elphick et al. 2011) and NOEC 1397 mg/L (PESC, 2013), all studies conducted in hardness 80-100 mg CaCO₃/L with 7 days exposure. Wang et al. (2016a) reported that reduced survival during hatching period was the primarily effect of sulfate, and no growth effect was found in their 7-14 days study. Though, in their 34 days study they received EC_{20} values for the endpoint biomass of

185 and 106 mg/L but the authors stated that there were uncertainties in the growth response (therefore not included in the EQS derivation). The LC_{10} values for *P. promelas* (Wang et al. 2016a) were therefore included in the derivation. The LC_{10} values reported by Kennedy et al. (2012) for eyed eggs of *O. mykiss* was included since the data suggest evidence that early life stage were sensitive to sulfate exposure. Kennedy et al. (2012) also investigated growth of the fry and the effect was minimal and statistical effect values could not be calculated. Though, it is not well-defined in European Communities (2011) if LC_{10} values may be used in the derivation.

When sufficient data was available both deterministic derivation (applying an assessment factor (AF) to the lowest effect value) and probabilistic derivation (performing a species sensitivity distribution (SSD)) were used to enable comparison between the methods. The software ETX 2.1 (provided by the Netherlands National Institute for Public Health and the Environment (RIVM)) was used for modelling the SSD. Normal distribution and goodness-fit of the model were calculated with three different tests: Anderson-Darling, Kolmogorov-Smirnov, and Cramer von Mises.

Only one marine ecotoxicological study was found in the literature search (the algae *Nitzschia linearis* with a LC₅₀ of 1284 mg/L). When deriving EQS values for marine ecosystems in the absence of marine data, larger AF are necessary to take into account additional uncertainties associated with the extrapolation (European Communities, 2011). The relative toxicity to the marine crustacean *Americamysis bahia* was $F^- > K^+ > HCO3^- > Ca^{2+} > Mg^{2+} > Br^- > SO_4^2$ (Unpublished data, SETAC 2004). Elevated ion concentrations may cause toxicity to freshwater organisms due to osmotic stress. Freshwater organisms are hyper-osmotic regulators and as the salinity increase they tend to take up more ions, consequently, they lose water from cells causing adverse effects. However, marine species are generally hypo-osmotic regulators and have physiological mechanisms to maintain a proper balance of water and dissolved ions (SETAC 2004; Hart et al. 1991), for this derivation it was therefore assumed that marine species have higher (or equal) tolerance to sulfate.

Hardness dependent EQS

Initially, all data were categorized based on the water hardness (mg CaCO₃/L): Very soft (<36), Soft (36-89), Moderate hard (89-178), Hard (178-374), and Very hard (>374). However, no distinct hardness-related relationship could be established. This could be due to that the available studies include different durations, statistical criterion, endpoints, and water chemistry (ionic composition). Since several studies only use on level of hardness (typical 100 mg CaCO₃/L), sensitive species were not present in the lower categories of hardness, which resulted in stringent effect values at higher hardness. When only data that investigated hardness as a modifying factor were used, it was possible to distinguish a hardness related response. Three different scenarios for deriving EQS were proposed:

- (1) Derive hardness dependent EQS based on studies that investigated hardness as a modifying factor (deterministic derivation).
- (2) Derive EQS based on data of water hardness of approximately 100 mg CaCO₃/L (deterministic and probabilistic derivation).
- (3) Derive EQS based on realistic worst-case data, with data of hardness representing Swedish water (≤ 50 mg CaCO₃/L) (only AA-EQS).

The British Columbia Ministry of Environment has established water quality guidelines for sulfate at different categories of water hardness (BC, 2013). The water quality guidelines were based on LC_{20} values in a deterministic derivation using AF 2. However, the use of LC_{20} values and such low AF in a deterministic derivation is not in line with European Communities (2011).

2. PROPOSED ENVIRONMENTAL QUALITY STANDARDS FOR SULFATE

Proposals of MAC-EQS for sulfate (MAC-EQS _{added})								
Hardness (mg	Hardness (mg Scenario 1							
CaCO ₃ /L)								
Method	≥25	40-50	75-100	≥160	≈100			
Dotorministic (mg/l)	59.6	95.7	158.0	317.8	65.3			
Deterministic (mg/L)	(57.6)	(88.3)	(154.0)	(270.8)	(63.3)			
Brobabilistic (mg/L)	73.9							
Probabilistic (mg/L)			-		(72.5)			

Proposals of AA-EQS for sulfate (AA-EQS _{added})								
Hardness (mg		Scer	nario 1		Scenario 2	Scenario 3		
CaCO ₃ /L) Method	6-15	40-50	80-100	≈100	Realistic worst- case			
Deterministic (mg/L)	-	15.0	41.9	56.0	12.9 (7.2)	12.9 (7.2)		
Probabilistic (mg/L)			-		35.0 (25.6)	43.7 (34.1)		

3. MEASURED ENVIRONMENTAL CONCENTRATIONS IN SWEDEN

Freshwater monitoring data divided into number of monitoring stations with different sulfate concentrations are presented in table 1. Table 2 and 3 presents sulfate measurements at different water hardness. Table 2 provides measurements for recipient controls (SRK) (areas affected by human activity), and table 3 from national and regional monitoring from 2012-2016. The data were collected from the Swedish University of Agricultural Sciences (SLU) database of environmental monitoring data. It was not possible to determine precise background concentrations. However, the majority (66%) of the measurements were below 5 mg/L.

Sulfate concentration (mg/L)	Number of stations
<5	24 352
5–10	6 879
10-25	3 527
25–50	1 386
50–100	514
100–200	94
>200	81

Table 1. Monitoring data for 2010-1016 from rivers and lakes in Sweden (SLU database of monitoring data).

Table 2. Measured sulfate concentrations from Swedish recipient controls (SRK) at different hardness (SLU database of monitoring data).

Hardness (mg CaCO ₃ /L) SO ₄ ²⁻ (mg/L)	<15	15-25	25-50	50-100	100- 150	150- 200	200- 250	250- 300	>300
Mean	4.8	8.7	12.6	27.4	52.2	87.4	193.5	285.1	389.9
Мах	110	154	52.9	100	153.7	211.4	400	459.3	524.5
Min	0.3	2.6	3.6	6.4	14	19	29	190.3	279.7
Nr of samples	3024	578	493	361	146	85	32	27	24

Table 3. Measured sulfate concentrations from Swedish national and regional monitoring at different hardness (SLU database of monitoring data).

Hardness (mg CaCO ₃ /L) SO ₄ ²⁻ (mg/L)	<15	15-25	25-50	50-100	100- 150	150- 200	200- 250	250- 300	>300
Mean	3.0	7.3	12.0	19.4	32.0	43.6	45.8	42.8	77.8
Max	38.3	91.2	139.2	164.0	315.2	427.9	146.4	94.1	424.6
Min	0.2	0.2	0.2	1.4	1.8	2.7	6.4	9.4	27.5
Nr of samples	24861	4194	2360	986	676	459	206	91	32

4. AQUATIC ECOTOXICITY OF SULFATE

Mechanisms of major-ion toxicity to aquatic organisms are due to osmoregulatory stress, specific ion toxicity (concentration exceeding toxic levels), or imbalance of the ionic composition (SETAC 2004; Goetsch and Palmer 1997). Mount et al. (1997) investigated the toxicity of varying combinations of major ions to *P. promelas*, *D. magna* and *C. dubia*. In general, the ionic toxicity was K^+ > HCO3⁻ \approx Mg²⁺ > Cl⁻ > SO₄²⁻. The toxicity of SO₄²⁻ was reduced in waters containing more than one cation when *C. dubia* and *D. magna* were exposed. No described mode of action for sulfate has been found.

Modifying factors

Several studies have demonstrated that increased water hardness decreases the toxicity of sulfate in both acute and chronic exposures. The exceptions of this general trend were chronic exposures to *B. calyciflorus* (rotifer), *P. regilla* (amphibian), and *H. azteca* (crustacea). When very hard water was used (e.g. 320 mg CaCO₃/L) the sensitivity in some cases increases, this may be due to the overall ionic strength in the test dilutions, which may result in osmotic stress to the organisms (Elphick et al., 2011).

Chloride has also been identified as a modifying factor. Soucek (2007b) demonstrated that increasing chloride concentrations from 5 to 25 mg/L increased the tolerance of sulfate to H. azteca. However, the toxicity to C. dubia was not significantly correlated within that range of chloride. Chloride concentrations ranging between 25-500 mg/L resulted in an opposite trend for both species and increased the mortality. The results from the study suggest evidence that chloride and sulfate toxicity were additive at higher concentrations of chloride. Soucek (2007b) also concluded that the conductivity was highly positive correlated with survival of *H. azteca* and *C. dubia* during sulfate exposure. Likewise, Soucek and Kennedy (2005) observed that the toxicity to H. azteca decreased with increasing chloride concentrations from 1.6 to 60 mg/L. Other findings suggest that increased molar ratio of calcium and magnesium may influence the toxicity (Davies and Hall, 2007; Davies, 2002). In exposures of similar hardness but with higher chloride concentrations and higher calcium-magnesium ratio, the toxicity to H. azteca and C. dubia decreased (Soucek ad Kennedy, 2005). The LC₅₀ varied from 2050 to 2526 mg/L for C. dubia, and from 512 to 2855 mg/L for H. Azteca, in diluents with Ca:Mg of 0.88 and chloride levels of 1.9 mg/L compared to Ca:Mg of 3.25 and chloride levels of 3.25 mg/L respectively (Soucek and Kennedy, 2005; Soucek 2007a). The same trend was observed in exposures to D. magna (Davies, 2002; Davies and Hall, 2007). Davies (2002) stated that most natural waters have Ca:Mg ratios above 0.7 and that toxicity data based on water with low Ca:Mg ratios should be considered conservative. However, Wang et al. (2016) concluded that the toxicity to embryos of P. promelas did not decrease with increased Ca:Mg ratio or increased chloride concentrations (10 to 25 mg/L). Instead they suggested that the decreased toxicity could be explained by increased potassium concentrations (from 1 to 3 mg/L).

Data used in the derivation for crustacean was conducted in molar ratio of Ca:Mg of 1.7-3.2 and chloride concentrations below 10 mg/L. Regarding acute *P. promelas* (embryo) study by Wang et al. (2016a), data conducted in potassium concentrations of 1 mg/L was used in the derivation since concentrations of 3 mg/L was assessed as not realistic in relation to Swedish waters.

5. ACUTE FRESHWATER TOXICITY

In total, 17 acute ecotoxicity studies with 101 effect values were found (table S1). The study showing lowest effect value was Goetsch and Palmer (1997) with the insect *Tricorythus sp.* and a LC₅₀ of 446 mg/L conducted in water hardness 69.4 mg CaCO₃/L (table S1). However, the study was not included in the derivation since the study did not investigated hardness as a modifying factor, or was not conducted in hardness of approximately 100 mg CaCO₃/L. Additionally, there are some uncertainties in the study; Goetsch and Palmer (1997) used field-collected organisms, river water as experimental medium instead of synthetic medium, and the effect value was not statistically confirmed (only observed experimentally). In addition, other studies demonstrate that *N.triangulifer* (different species but same order) requires food during acute ecotoxicity tests (Struewing et al. 2015; Weaver et al. 2015; Soucek and Dickinson 2015). Soucek and Dickinson (2015) conducted a fed acute ecotoxicity test using *N. triangulifer* and received an effect value of 1227 mg/L, the differences in the results may be due to different sensitivity to sulfate, that *Tricorythys sp.* was not fed or due to different water hardness used in the tests.

Scenario 1: Hardness dependent MAC-EQS, based on studies investigating hardness as a modifying factor

Using data from studies investigating hardness as a modifying factor it was possible to distinguish a hardness-related response. The dataset provides effect data for three different categories of hardness representing two or three trophic levels (table 4). Note that scenario 1 does not include the most sensitive species *P. promelas* (embryo) with LC_{50} of 653 mg/L since this was not a study investigating hardness as a modifying factor (Wang et al. 2016, see table 5).

Deterministic derivation

The data showing lowest effect value for hardness 10-25 was *H. azteca* with a LC₅₀ of 596 mg/L, for hardness 40-50 *P. promelas* with a LC₅₀ of 957 mg/L, for hardness 75-100 *H. azteca* with an LC₅₀ of 1580mg/L, for hardness \geq 160 *P. promelas* with a LC₅₀ of 3178 mg/L. AF 10 was applied since the dataset includes data for species of three trophic levels (except for hardness 10-25) and the standard deviation of the ecotoxicity data was not higher than 3 in both directions (European Communities, 2011). The MAC-EQS was set to 59.6, 95.7, 158.0 and 317.8 mg/L for hardness 10-25, 40-50, 75-100 and \geq 160 respectively (Table 7).

Species	Hardness CaCO₃ (mg/L)	Endpoint & Duration	Effect value SO4 ²⁻ (mg/L)	Reference
Hardness 10-25 ¹				
	25	48h LC50	1194	Davies and Hall 2007
D	25	48h LC50	1563	Davies and Hall 2007
D. magna	25	48h LC50	957	Davies 2002
	25	48h LC ₅₀	1571	Davies 2002
H. azteca	25	96h LC50	596	Davies and Hall 2007
P. subcapitat	10	72h EC ₅₀	1430	Elphick et al. 2011
Hardness 40–50 ²	·			
D. promolas (lonuos)	40	7d LC ₅₀	1649	Elphick et al. 2011
P. promelas (larvae)	50	7d LC ₅₀	957	PESC et al. 2013
H. azteca	50	96h LC ₅₀	1448	Davies and Hall 2007
D	50	48h LC ₅₀	1551	Davies and Hall 2007
D. magna	50	48h LC ₅₀	1768	Davies 2002
Hardness 75–100				
P. promelas (larvae)	80	7d LC50	2938	Elphick et al. 2011
	75	48h LC50	3342	Davies and Hall 2007
	75	48h LC ₅₀	3155	Davies 2002
D. magna	100	48h LC50	3203	Davies and Hall 2007
	100	48h LC ₅₀	3808	Davies and Hall 2007
	100	48h LC ₅₀	3839	Davies 2002
	75	96h LC ₅₀	1580	Davies and Hall 2007
H. azteca	100	96h LC50	2240	Davies and Hall 2007
	100	96h LC50	2971	Davies 2002
P. subcapitat	80	72h EC50	2742	Elphick et al. 2011
Hardness ≥160 ²				
P. promelas	160	7d LC ₅₀	4553	Elphick et al. 2011
	250	7d LC ₅₀	3178	PESC 2013
H. azteca	250	96h LC ₅₀	5259	Davies and Hall 2007

1 = EQS was derived for hardness 10-25 mg CaCO₃/L although it lacked data for fish (i.e. not in accordance with European Communities, 2011) to ensure protection of *H. azteca*. 2 = base set assumed to represent three trophic levels even though the lack of algae (algae EC₅₀ for hardness of 10-25 mg CaCO₃/L were not among the most sensitive taxonomic group).

Scenario 2: MAC-EQS based on studies with hardness \approx 100 mg CaCO₃/L

The data from studies conducted in approximately 100 (80-110) mg $CaCO_3/L$, is presented in table 5. The datasets includes one order of fish and algae, two orders of crustacean and insects, and four orders of mollusca (a total of 15 species).

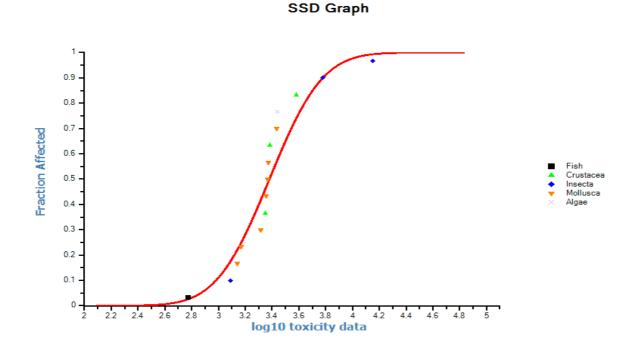
Species (life stage)	Hardness CaCO₃ (mg/L)	Endpoint & Duration	Effect value SO4 ²⁻ (mg/L)	Reference
Fish				
Pimephales promelas (embryos)	102-110	7d LC ₅₀	653 ¹	Wang et al. 2016a
Invertebrates				
Ceriodaphnia dubia (neonates)	100	48h EC50	2441	Wang et al. 2016a
Daphnia magna (<24h)	100	48h LC ₅₀	3823	Geometric mean
Hyalella azteca (2-11d old)	80-100	96h L(E)C50	2415	Geometric mean
Insecta				
Chironomus dilutus (larvae)	100	96h EC50	5992	Wang et al. 2016a
Chironomus tentans (10d old)	94	48h LC ₅₀	14134	Soucek and Kennedy 2005
Neocleon triangulifer (nymph)	99	96h LC ₅₀	1227	Soucek and Dickinson 2015
Mollusca				
Lampsilis abrupta (juveniles)	100	96h EC50	2362	Wang et al. 2016a
Lampsilis siliquoidea (juvenile)	106	96h EC50	2325	Wang et al 2016b
Ligumia recta	92	96h LC ₅₀	1483	US EPA 2010
Margaritifera falcata (juvenile)	106	96h EC50	1378	Wang et al 2016b
Megalonaias nervosa (juvenile)	103	96h EC ₅₀	2279	Wang et al 2016b
Sphaerium simile (juvenile)	94	96h LC ₅₀	2078	Soucek and Kennedy 2005
Utterbackia imbecillis (juvenile)	103	96h EC50	2709	Wang et al 2016b
Algae				·
Pseudokirchneriella subcapitata	80	72h EC50	2742	Elphick et al. 2011

Table 5. Acute ecotoxicity studies for sulfate at water hardness \approx 100 mg CaCO₃/L used in the MAC-EQS derivation.

1 = Potassium concentrations of approximately 1 mg/L, this study has been evaluated to be of sufficient reliability and relevance for EQS derivation (see table S4).

Deterministic derivation

The study showing lowest effect values was Wang et al. (2016a) with embryos of *P. promelas* and a LC_{50} of 653 mg/L. AF 10 was applied since the dataset includes three trophic levels and the standard deviation of the ecotoxicity data was not higher than 3 in both directions (European Commiunities, 2011). The MAC-EQS was set to 65.3 mg/L (table 7).


Probabilistic derivation

The dataset does not fulfil the criteria to perform a SSD due to the absence of taxonomic groups for higher aquatic plants and a second family in the phylum Chordata (European Communities, 2011) (table 5). However, there are supportive information for higher aquatic plants (chronic), fish (acute), and amphibians (chronic) suggesting low toxicity (table S1 and S2). Despite the lack of data, a SSD was

performed as a comparison to the deterministic derivation (figure 1). Normal distribution was accepted at significance level 0.05 in the Anderson-Darling and Cramer von Mises tests, and at level 0.025 in the Kolmogorov-Smirnov test. The HC5 was 739.18 mg/L (table 6). AF 10 was applied (European Communities 2011), resulting in a MAC-EQS of 73.9 mg/L (table 7).

Type of HC5	Value (mg/L)	log10(Value)(mg/L)	Description
LL HC5	396.26	2.60	Lower estimate of the HC5
HC5	739.18	2.87	Median estimate of the HC5
UL HC5	1101.89	3.04	Upper estimate of the HC5
sprHC5	2.83	0.44	Spread of the HC5 estimate

Table 6. The results of HC5 from the SSD of acute sulfate ecotoxicity data conducted in hardness \approx 100 mgCaCO₃/L.

Figure 1. SSD (ETX 2.1) for acute freshwater ecotoxicity studies of sulfate conducted in hardness \approx 100 mg CaCO₃/L. The most sensitive species was the fish *P. promelas* (embryos). The HC5 was 739.18 mg/L.

Hardness (mg CaCO₃/L)		Scena	Scenario 2		
Method	≥25	40-50	75-100	≥160	Hardness ≈100
Deterministic (mg/L)	59.6	95.7	158.0	317.8	65.3
Probabilistic (mg/L)			-		73.9 ¹

 Table 7. Proposals of MAC-EQS for sulfate based on different methods and/or hardness.

1 = Based on incomplete dataset (lacked data for higher aquatic plants and a second family in the phylum Chordata).

6. CHRONIC FRESHWATER TOXICITY

The total dataset includes two orders of fish, crustacean, insects, higher aquatic plants and one order of amphibians, mollusca, rotifer and algae. In total, 9 chronic ecotoxicity studies with 95 effect values were found (table S2 and S3).

Scenario 1: Hardness dependent AA-EQS, based on studies investigating hardness as a modifying factor

Table 8 summarizes the chronic studies investigating hardness as modifying factor. Water hardness higher than 250 mg CaCO₃/L was omitted since it have shown higher toxicity which may be a result of the overall ionic strength (Elphick et al. 2011). Note that scenario 1 does not include the most sensitive species *N. triangulifer* (mayfly) with a NOEC of 129 mg/L since this study did not investigate hardness as a modifying factor (Soucek and Dickinson 2015, see table 9). The lack of mayflies studies has previously been stressed when setting water quality guidelines due to preliminary work indicating sensitivity to sulfate (BC, 2013). In addition, Vellemu et al. (2017) provide supporting information of mayflies (*Adenophlebia auriculata*) being sensitive with 10 day LC₁₀ of 129 mg/L (not considered in the derivation due to short duration).

Deterministic derivation

The data showing lowest effect value for hardness 6-15 was *O. mykiss* with a LC_{10} of 175.4 mg/L, for hardness 40-50 *C. dubia* with a NOEC of <150 mg/L, for hardness 80-100 *O. mykiss* with a LC_{10} of 419.2 mg/L and for hardness >160 *B. calyciflorus* with a NOEC of 560.0 mg/L. The hardness category 6-15 lacked ecotoxicity data for the trophic level crustacean (which represented the most sensitive species for hardness 40-50), EQS was therefore not derived. The AA-EQS was set to 15.0, 41.9 and 56.0 mg/L at hardness 40-50, 80-100 and >160mg CaCO₃/L respectively (table 13). According to European Communities (2011), EQS values should not be based on effect data with higher toxicity than the tested concentration (e.g. *C. dubia*, Elphick et al. 2011). An alternative was therefore to base EQS for hardness <50 on *O. mykiss* with a LC_{10} of 175.4 resulting in an AA-EQS of 17.5 mg/L.

 Table 8. Chronic studies investigating hardness as a modifying factor.

Species (life stage)	Hardness CaCO ₃ (mg/L)	Endpoint & D		Effect value SO4 ²⁻ (mg/L)	Reference
Hardness 6-15 ¹	r				
Oncorhynchus mykiss (eyed eggs)	6	Survival	21d LC ₁₀	175	Kennedy 2012
Pseudacris regilla (tadpoles)	15	Survival/ growth	21d NOEC	1075	Elphick et al. 2011
Pseudokirchneriella subcapitata	10	Growth	72h NOEC	1100	Elphick et al. 2011
Hardness 40-50					
Oncorhynchus mykiss (eyed eggs)	50	Survival	21d LC ₁₀	300	Kennedy 2012
<i>Ceriodaphnia dubia</i> (neonates)	40	Reproduction	7d NOEC	<150 ²	Elphick et al. 2011
Brachionus calyciflorus (<4h old)	40	Reproduction	48h NOEC	950	Elphick et al. 2011
Lemna minor	50	Frond increase	7d EC ₁₀	2143	PESC 2013
Hardness 80-100					
Oncorhynchus mykiss (eyed eggs)	100	Survival	21d LC10	419	Kennedy 2012
Pseudacris regilla (tadpoles)	80	Survival/ growth	21d NOEC	978	Elphick et al. 2011
Ceriodaphnia dubia (neonates)	80	Reproduction	7d NOEC	645	Elphick et al. 2011
Brachionus calyciflorus (<4h old)	80	Reproduction	48h NOEC	510	Elphick et al. 2011
Pseudokirchneriella subcapitata	80	Growth	72h NOEC	1200	Elphick et al. 2011
Lemna minor	100	Frond increase	7d EC ₁₀	2243	PESC 2013
Hardness ≥160			-		
Oncorhynchus mykiss (eyed eggs)	250	Survival	21d LC ₁₀	674	Kennedy 2012
<i>Ceriodaphnia dubia</i> (neonates)	160	Reproduction	7d NOEC	775	Elphick et al. 2011
Brachionus calyciflorus (<4h old)	160	Reproduction	48h NOEC	560	Elphick et al. 2011
Lemna minor	250	Frond increase	7d EC ₁₀	2314	PESC 2013

1 = Hardness of 6-15 lacked ecotoxicity data for invertebrates. 2 = Large confidential interval.

Scenario 2: AA-EQS based on studies with hardness \approx 100 mg CaCO₃/L

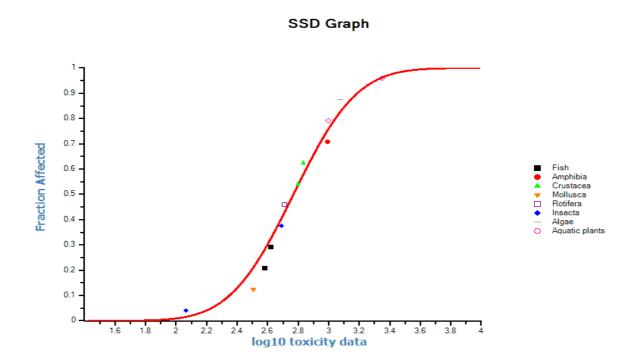
The data from studies conducted in approximately 100 (80-105) mg CaCO₃/L is presented in table 9 and includes two orders of fish, crustacean, insects and higher aquatic plants, and one order of amphibian, mollusca, rotifer and algae (a total of 12 species).

Species (life stage)	Hardness CaCO₃ (mg/L)	Endpoint & D	uration	Effect value SO4 ²⁻ (mg/L)	Reference				
Fish		_							
Oncorhynchus mykiss (eyed eggs)	100	Survival	31d LC ₁₀	419	Kennedy et al. 2012				
Pimephales promelas (embryos)	100	Survival	34d LC ₁₀	430	Wang et al. 2016a ¹				
Amphibians									
<i>Pseudacris regilla</i> (tadpoles)	80	Survival/ growth	21d NOEC	978	Elphick et al. 2011				
Invertebrates - Crustacean									
<i>Ceriodaphnia dubia</i> (neonates)	80-100	Reproduction	7d NOEC	632	Geometric mean				
Hyalella azteca	100	Growth	28d EC10	682	PESC 2013				
Invertebrates -Mollusca	a								
<i>Lampsilis abrupta</i> (juveniles)	100	Dry weight	28d EC ₁₀	320	Wang et al. 2016a				
Invertebrates- Insecta									
Chironomus dilutus (larvae)	100	Dry weight	7d EC10	489	Wang et al. 2016a				
Neocleon triangulifer (nymph)	99	Development delay	36d NOEC	129 ²	Soucek and Dickinson 2015 ¹				
Rotifers									
Brachionus calyciflorus (<4h old)	80	Reproduction	48h NOEC	510	Elphick et al. 2011				
Algae									
Pseudokirchneriella subcapitata	80	Growth	72h NOEC	1200	Elphick et al. 2011				
Higher aquatic plants									
Fontinalis antipyretica	105	Shoot length	21d NOEC	1000	Davies 2007				
Lemna minor	100	Frond increase	7d EC10	2243	PESC 2013				

Table 9. Chronic ecotoxicity data of sulfate conducted in hardness \approx 100 mg CaCO3/L used in the AA-EQS derivation.

1 = The study has been evaluated to be of sufficient reliability and relevance for EQS derivation (see table S4). 2 = NOEC was not reported, the concentration below the statistically significant concentration was set as NOEC.

Deterministic derivation


The most sensitive species was the *N. triangulifer* with the endpoint "percent of pre-emergent nymph" (i.e. developmental effects) with a NOEC of 129 mg/L (Soucek and Dickinson 2015). AF 10 was applied since the dataset include chronic data for three trophic levels (European Communities, 2011). The AA-EQS was set to 12.9 mg/L.

Probabilistic derivation

The dataset fulfilled the criteria to perform a SSD (European Communities, 2011). Normal distribution was accepted at all significance levels in all tests. The SSD graph is presented in figure 2. The median estimate of the HC5 was 175.12 (table 10). AF 5 was used (European Communities 2011), resulting in an AA-EQS of 35.0 mg/L.

Table 10. The results of HC5 from the SSD of chronic sulfate ecotoxicity data conducted in hardness \approx 100 mg CaCO₃/L.

Type of HC5	Value (mg/L)	log10(Value) (mg/L)	Description
LL HC5	81.94	1.91	lower estimate of the HC5
HC5	175.12	2.24	median estimate of the HC5
UL HC5	276.47	2.44	upper estimate of the HC5
sprHC5	3.37	0.53	spread of the HC5 estimate

Figure 2. SSD (ETX 2.1) for chronic freshwater ecotoxicity studies of sulfate conducted in hardness \approx 100 mg CaCO₃/L. The most sensitive species was the insect *N. triangulifer*. The HC5 was set to 175.12 mg/L.

Scenario 3: AA-EQS based on realistic worst-case data for Sweden

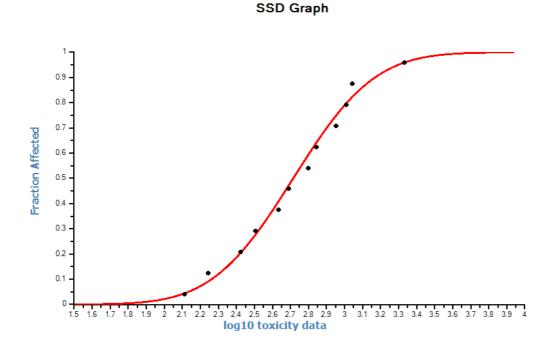
Studies conducted in hardness that represent Swedish water (\leq 50 mg CaCO₃/L) are presented in table 11. The *P. promelas* study by Wang et al. (2016a) (100 mg CaCO₃/L) was included since available studies with softer water were conducted with shorter duration (i.e. showed lower toxicity). Species of which there only were available studies conducted in hardness 100 mg CaCO₃/L were included to gain sufficient effect values for a SSD. The dataset includes two orders of fish, crustacean, insects and higher aquatic plants, and one order of amphibian, mollusca, rotifer and algae (a total of 12 species).

Species (life stage)	Hardness CaCO₃ (mg/L)	Endpoint & I	Duration	Effect value SO4 ²⁻ (mg/L)	Reference					
Fish										
Oncorhynchus mykiss (eyed eggs)	6	Survival	31d LC ₁₀	175	Kennedy et al. 2012					
Pimephales promelas (embryos)	100	Survival	34d LC ₁₀	430	Wang et al. 2016a ¹					
Amphibians										
<i>Pseudacris regilla</i> (tadpoles)	15-80 ²	Survival/ growth	21d NOEC	1025	Elphick et al. 2011					
Invertebrates - Crustacean										
<i>Ceriodaphnia dubia</i> (neonates)	40-44	Reproduction	7d NOEC	266	Geometric mean					
Hyalella azteca	50-100 ²	Growth	28d EC ₁₀	893	PESC 2013					
Invertebrates -Mollusca		·								
<i>Lampsilis abrupta</i> (juveniles)	100	Dry weight	28d EC ₁₀	320	Wang et al. 2016b					
Invertebrates- Insecta		·								
Chironomus dilutus (larvae)	100	Dry weight	7d EC10	489	Wang et al. 2016a					
Neocleon triangulifer (nymph)	99	Development/ Survival	36d NOEC	129 ³	Soucek and Dickinson 2015 ¹					
Rotifers	•									
Brachionus calyciflorus (<4h old)	40-80 ²	Reproduction	48h NOEC	696	Elphick et al. 2011					
Algae		·								
Pseudokirchneriella subcapitata	10	Growth	72h NOEC	1100	Elphick et al. 2011					
Higher aquatic plants				•	·					
Fontinalis antipyretica	15	Growth	21d NOEC	628	Elphick et al. 2011 Geometric mean					
Lemna minor	50	Growth	7d EC10	2143	PESC 2013					

 Table 11. Chronic ecotoxicity data with realistic worst-case data for Sweden used in the AA-EQS derivation.

1 = The study has been evaluated to be of sufficient reliability and relevance for EQS derivation (see table S4). 2 = The effect value for harder water was included in the geometric mean since it suggests higher toxicity. 3 = NOEC was not reported, the concentration below the statistically significant concentration was set as NOEC.

Deterministic derivation


The same AA-EQS as in scenario 2. The most sensitive species was the *N. triangulifer* with the endpoint "percent of pre-emergent nymph" (i.e. developmental effects) with a NOEC of 129 mg/L (Soucek and Dickinson 2015). AF 10 was applied since the dataset include chronic data for three trophic levels (European Communities, 2011). The AA-EQS was set to 12.9 mg/L.

Probabilistic derivation

The dataset fulfilled the criteria to perform a SSD (European Communities, 2011). Normal distribution was accepted at all significance levels in all tests. The median estimate of the HC5 was 130.94 mg/L (table 12). The graph of the SSD is presented in figure 3. AF 3 was used since the derivation was based on a large dataset that showed good taxonomic representativeness. In addition, the data were based on worst-case data. The AA-EQS was set to 43.7 mg/L. All AA-EQS are summarized in table 13.

Table 12. The results of HC5 from the SSD of chronic sulfate ecotoxicity based on realistic worst-case data for Sweden.

Type of HC5	Value (mg/L)	log10(Value) (mg/L)	Description
LL HC5	55.90	1.75	lower estimate of the HC5
HC5	130.94	2.12	median estimate of the HC5
UL HC5	218.44	2.34	upper estimate of the HC5
sprHC5	3.91	0.59	spread of the HC5 estimate

Figure 3. SSD (ETX 2.1) for chronic freshwater toxicity studies with realistic worst-case data for Sweden. The most sensitive species was the insect *N. triangulifer.* The HC5 was set to 130.94 mg/L.

Table 13. Proposed AA-E	Table 13. Proposed AA-EQS for sulfate based on different hardness scenarios and method.										
Hardness		Scer	nario 1		Scenario 2	Scenario 3					
(mg CaCO₃/L)											
	6-15	6-15 40-50		>160	Hardness≈100	Realistic worst- case					
Method											
Deterministic (mg/L)	-	15.0 ¹	41.9	56.0	12.9	12.9					

35.0

43.7

 Probabilistic (mg/L)

 1 = 17.5 mg/L if excluding NOEC of <150 mg/L for C. dubia.</td>

7. ADDED RISK APPROACH

Added effect values (e.g. NOEC_{added}) was calculated by subtracting the sulfate concentration used in the control medium from the effect value (European Communities, 2011). Added risks (EQS_{added}) was calculated for all MAC-EQS scenarios (table 14), and for scenario 2 (hardness \approx 100 mg CaCO₃/L) and 3 (realistic worst-case data) for the AA-EQS (table 15). Effect values_{added} for MAC-EQS_{added} can be found in supportive information table S5 (scenario 1), S6 (scenario 2) and for AA-EQS_{added} in table S8 (scenario 2) and S10 (scenario 3). The MAC-EQS_{added} did not differ considerably from MAC-EQS (except for hardness \geq 160 mg CaCO₃/L). The AA-EQS_{added} were approximately 6-10 mg/L lower compared to AA-EQS.

 Table 14. MAC-EQS_{added} for sulfate based on different hardness scenarios and method.

Hardness (mg CaCO₃/L)		Scena		Scenario 2		
Method	≥25	40-50	75-100	≥160	Hardness ≈100	
Deterministic (mg/L)	57.6	88.3	154.0	270.8	63.3	
Probabilistic (mg/L)		72.5 ¹				

1 = HC5 results in table S7, SSD graph in figure S1.

 Table 15. AA-EQS_{added} for sulfate (mg/L) based on different hardness scenarios and method.

Hardness (mg CaCO₃/L)	Scenario 2	Scenario 3				
Method	Hardness≈100	Realistic worst- case				
Deterministic (mg/L)	7.2	7.2				
Probabilistic (mg/L)	25.6 ¹	34.1 ²				

1 = HC5 results in table S9, SSD graph in figure S2. 2 = HC5 results in table S11, SSD graph in figure S3.

8. IDENTIFICATION OF ISSUES RELATING TO UNCERTAINTY IN RELATION TO THE EQSS DERIVED

Different molar ratio of calcium, magnesium, chloride, and possibly potassium concentrations may influence the toxicity of sulfate. The complexity of imbalance toxicity of major ion entails uncertainties given the large numbers and combinations of ions.

The most critical studies setting the base for the deterministic derivations (scenario 2 and 3) have been evaluated for their reliability and relevance (supportive information table S4). Due to time restrictions, evaluations were not conducted for entire datasets used in scenario 1 or in the probabilistic derivations.

9. REFERENCES

BC. 2013. Ambient water quality guidelines for sulphate. British Columbia ministry of environment: Victoria, BC.

Davies TD. 2002. Sulphate toxicity to freshwater organisms and molybdenum toxicity to rainbow trout (*Oncorhynchus mykiss*). Master of Science Thesis, Resource Management and Environmental Studies. University of British Columbia. 119p.

Davies TD. 2007. Sulphate toxicity to the aquatic moss, *Fontinalis antipyretica*. Chemosphere 66: 444-451.

Davies TD, Hall KJ. 2007. Importance of calcium in modifying the acute toxicity of sodium sulphate to *Hyalella azteca* and *Daphnia magna*. Environ. Toxicol. and Chem. 26(6): 1243-1247.

Dowden BF, Bennett HJ. 1965. Toxicity of selected chemicals to certain animals. J. Water Pollut. Control Fed 37(9): 1308-1316.

Elphick J, Davies M, Gilron G, Canaria E, Lo B, Bailey H. 2011. An aquatic toxicological evaluation of sulphate: the case for considering hardness as a modifying factor in setting water quality guidelines. Environ. Toxicol. and Chem. 30:247-253.

Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C, Swadling K. 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105-144.

Goetsch PA, Palmer CG. 1997. Salinity Tolerances of Selected Macroinvertebrates of the Sabie River, Kruger National Park, South Africa. Arch. Environ. Contam. Toxicol 32: 32–41.

Kennedy CJ. 2012. Assessment of toxicological effects of sulphate under varying hardness using early life stages of Rainbow trout (*Oncorhynchus mykiss*). Unpublished data. Submitted from BC Ministry of Environment.

Lasier PJ, Hardin IR. 2009. Observed and predicted reproduction of *Ceriodaphnia dubia* exposed to chloride, sulfate, and bicarbonate. Environ. Toxicol. and Chem. 29: 347–358.

Moermond CTA, Kase R, Korkaric M, Ågerstand M. 2016. CRED: Criteria for Reporting and Evaluationg Ecotoxicity Data. Environ. Toxicol. and Chem. 25 (5): 1297-1309.

Mount DR, Gulley DD, Hockett JR., Garrison, T. D. and Evans, J. M. 1997. Statistical models to predict the toxicity of major ions to *Ceriodaphnia dubia*, *Daphnia magna* and *Pimephales promelas* (fathead minnows). Environ. Toxicol. and Chem 16: 2009–2019.

Patrick R, Cairns J, Scheier A. 1968. The relative sensitivity of diatoms, snails, and fish to twenty common constituents of industrial wastes. The Progressive Fish-Culturist 30(3): 137-140.

PSEC, 2013. Ambient Water Quality Guidelines For Sulphate (appendix A). Pacific Environmental Science Center. Canada, British Columbia. Available at: http://www2.gov.bc.ca/gov/content/environment/air-land-water/water-quality/water-quality-guidelines/approved-water-quality-guidelines (accessed 27Jun. 17)

SETAC, 2004. Whole effluent toxicity Testing: Ion imbalance. SETAC Technical Issue Paper. Society of Environmental Toxicology and Chemistry. SETAC Press, Pensacola, FL, USA.

Simmons JA. 2012. Toxicity of major cations and anions (Na, K, Ca, Cl and SO4) to macrophyte and an alga. Environmental Toxicology and Chemistry 31: 1370–1374.

Soucek DJ, Kennedy AJ. 2005. Effects of hardness, chloride, and acclimation on the acute toxicity of sulfate to freshwater invertebrates. Environ. Toxicol. and Chem 24(5): 1204-1210.

Soucek DJ. 2007a. Bioenergetic effects of sodium sulfate on the freshwater crustacean, *Ceriodaphnia dubia*. Ecotoxicology 16: 317–325.

Soucek DJ. 2007b. Comparison of hardness and chloride-regulated acute effects of sodium sulfate on two freshwater crustaceans. Environ Toxicol Chem 26: 773–779.

Soucek DJ. 2007c. Sodium sulfate impacts feeding, specific dynamic action, and growth rate in the freshwater bivalve *Corbicula fluminea*. Aquat. Toxicol 83: 315-322.

Soucek DJ, Dickinson A. 2015. Full-life chronic toxicity of sodium salts to the mayfly *Neocloeon triangulifer* in tests with laboratory cultured food. Environm. Toxicol. and Chem 34: 2126–2137.

Soucek DJ, Mount DR, Dickinson A, Hockett JR, McEwen AR. 2015. Contrasting effects of chloride on growth, reproduction, and toxicant sensitivity in two genetically distinct strains of *Hyalella azteca*. Environ Toxicol Chem 34: 2354–2362 (Supplemental Data).

Struewing KA, Lazorchak JM, Weaver PC, Johnson BR, Funk DH, Buchwalter DB. 2015. Part 2: Sensitivity comparisons of the mayfly Centroptilum triangulifer to Ceriodaphnia dubia and Daphnia magna using standard reference toxicants; NaCl, KCl and CuSO4. Chemosphere 139: 597-603.

USEPA. 2010. Final Report on Acute and Chronic Toxicity of Nitrate, Nitrite, Boron, Manganese, Fluoride, Chloride and Sulfate to Several Aquatic Animal Species. EPA 905-R-10-022. United States, Environmental Protection Agency.

Vellemu EC, Mensah PK, Griffin NJ, Odume ON. 2017. Sensitivity of the mayfly Adenophlebia auriculata (Ephemeroptera: Leptophlebiidae) to MgSO₄ and Na₂SO₄. Physics and Chemistry of the Earth 100: 81-85.

Wang N, Dorman RA, Ingersoll CR, Hardesty DK, Brumbaugh WG, Hammer EJ, Bauer CR, Mount DR. 2016a. Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water-only exposures. Environmental Toxicology and Chemistry 35(1): 115–127.

Wang N, Ivey CD, Ingersoll CR, Brumbaugh WG, Alvares D, Hammer EJ, Bauer CR, Augspurger T, Raimond S, Bernhart CM. 2016b. Acute sensitivity of broad range of freshwater mussels to chemicals with different modes of toxic action. Environmental Toxicology (early view).

Warne M St J, Schifko AD. 1999. Toxicity of Laundry Detergent Components to a Freshwater Cladoceran and Their Contribution to Detergent Toxicity. Ecotoxicology and Environmental Safety 44: 196-206.

Weaver PC, Lazorchak JM, Struewing KA, DeCelles SJ, Funk DH, Buchwater DB, Johnson BR. 2015. Part 1: Laboratory culture of Centroptilum triangulifer (Ephemeroptera: Baetide) Using a defined diet of three diatoms. Chemosphere 139: 589-59.

10. SUPPORTIVE INFORMATION – Ecotoxicity studies

Species (life stage)	Order	Guideline	Cl (mg/L)	Ca:Mg ratio	Hardness CaCO₃ (mg/L)	Endpoint & Duration	Effect value SO ₄ ²⁻ (mg/L)	Control SO ₄ ² (mg/L)	Reference
Fish									• •
Pimephales promelas	Cypriniformes	US EPA	na	na	na	96h LC ₅₀	5384	na	Mount et al. 1997
Pimephales promelas (juveniles)	Cypriniformes	ASTM	9.5	1.7	100	96h LC ₅₀	10869 ¹	20	Wang et al. 2016a
Pimephales promelas (larvae)	Cypriniformes	ASTM	9.5	1.7	100	96h LC ₅₀	4833 ¹	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	9.5	1.7	105	7d LC ₅₀	534 ¹	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	9.2	1.8	108	7d LC ₅₀	508 ¹	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	11	1.8	102	7d LC ₅₀	645 ^{1,2}	19	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	9.8	1.8	108	7d LC ₅₀	718 ^{1,2}	19	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	23	1.8	109	7d LC ₅₀	637 ¹	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	3.7	0.8	103	7d LC ₅₀	>1719 ³	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	11	1.8	110	7d LC ₅₀	6001,2	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	2.7	0.8	100	7d LC ₅₀	1780 ³	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	4.7	0.8	108	7d LC ₅₀	>1613 ³	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	na	1.8	109	7d LC ₅₀	1612 ³	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	9.5	1.7	105	10d LC ₅₀	478 ¹	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	9.2	1.8	108	10d LC ₅₀	508 ¹	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	11	1.8	102	10d LC ₅₀	645 ¹	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	9.8	1.8	108	14d LC ₅₀	692 ¹	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	23	1.8	109	14d LC ₅₀	644 ¹	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	3.7	0.8	102	14d LC ₅₀	>1986 ³	20	Wang et al. 2016a
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	40*	7d LC ₅₀	1649	23	Elphick et al. 2011
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	80*	7d LC ₅₀	2938	45	Elphick et al. 2011
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	160*	7d LC ₅₀	4553	91	Elphick et al. 2011
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	320*	7d LC ₅₀	>5250	182	Elphick et al. 2011
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	50*	7d LC ₅₀	946	74	PESC 2013
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	100*	7d LC ₅₀	1843	125	PESC 2013

 Table S1. Acute ecotoxicity studies for sulfate (na= not available).

Species (life stage)	Order	Guideline	Cl (mg/L)	Ca:Mg ratio	Hardness CaCO₃ (mg/L)	Endpoint & Duration	Effect value SO4 ²⁻ (mg/L)	Control SO ₄ ² (mg/L)	Reference
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	250*	7d LC ₅₀	3178	470	PESC 2013
Lepomis macrochirus	Perciformes	na	na	na	na	24h LC ₅₀ 4	11824	na	Dowden and Bennett 1965
Lepomis macrochirus	Perciformes	na	na	na	38	96h LC ₅₀	9121	na	Trama 1954
Lepomis macrochirus	Perciformes	na	na	na	na	96h LC ₅₀ 4	9121	na	Patrick et al. 1968
Invertebrates- Crustacean									
Ceriodaphnia dubia (<24h old)	Cladocera	ASTM	1.9	0.88	89	48h LC ₅₀	2050	90	Soucek and Kennedy 2005
Ceriodaphnia dubia (<24h old)	Cladocera	ASTM	33.9	3.25	107	48h LC ₅₀	2526	59	Soucek and Kennedy 2005
Ceriodaphnia dubia (neonates)	Cladocera	ASTM	1.9	0.88	92	48h LC ₅₀	2500	90	Soucek 2007a
Ceriodaphnia dubia (neonates)	Cladocera	ASTM	33.9	3.25	92	48h LC ₅₀	3000	59	Soucek 2007a
Ceriodaphnia dubia	Cladocera	US EPA	na	na	100	48h LC ₅₀	2083	na	Mount et al. 1997
Ceriodaphnia dubia (<24h old)	Cladocera	ASTM	1.9	0.88	194*	48h LC ₅₀	3000	na	Soucek and Kennedy 2005
Ceriodaphnia dubia (<24h old)	Cladocera	ASTM	1.9	0.88	288*	48h LC ₅₀	2946	na	Soucek and Kennedy 2005
Ceriodaphnia dubia (<24h old)	Cladocera	ASTM	1.9	0.88	390*	48h LC ₅₀	3174	na	Soucek and Kennedy 2005
Ceriodaphnia dubia (<24h old)	Cladocera	ASTM	1.9	0.88	484*	48h LC ₅₀	3516	na	Soucek and Kennedy 2005
Ceriodaphnia dubia (<24h old)	Cladocera	ASTM	1.9	0.88	578*	48h LC ₅₀	3288	na	Soucek and Kennedy 2005
Ceriodaphnia dubia (neonates)	Cladocera	na	9.5	1.7	100	48h EC ₅₀	2441	20	Wang et al. 2016a
Ceriodaphnia dubia (neonates)	Cladocera	na	na	na	na	48h EC ₅₀	3150	na	Warne and Schifko 1999
Daphnia magna (<24h old)	Cladocera	US EPA	na	na	100	48h LC ₅₀	3098	na	Mount et al. 1997
Daphnia magna (<24h old)	Cladocera	US EPA	na	0.7	25*	48h LC ₅₀	1194	na	Davies and Hall 2007
Daphnia magna (<24h old)	Cladocera	US EPA	na	0.7	50*	48h LC ₅₀	1551	na	Davies and Hall 2007
Daphnia magna (<24h old)	Cladocera	US EPA	na	0.7	75*	48h LC ₅₀	3342	na	Davies and Hall 2007
Daphnia magna (<24h old)	Cladocera	US EPA	na	0.7	100*	48h LC ₅₀	3203	59	Davies and Hall 2007
Daphnia magna (<24h old)	Cladocera	US EPA	na	0.7	25	48h LC ₅₀	1194	na	Davies and Hall 2007
Daphnia magna (<24h old)	Cladocera	US EPA	na	1.8	25	48h LC ₅₀	1563	na	Davies and Hall 2007
Daphnia magna (<24h old)	Cladocera	US EPA	na	7	25	48h LC ₅₀	1985	na	Davies and Hall 2007
Daphnia magna (<24h old)	Cladocera	US EPA	16.8	0.7	100	48h LC ₅₀	3203	102	Davies and Hall 2007
Daphnia magna (<24h old)	Cladocera	US EPA	16.8	1.8	100	48h LC ₅₀	38085	102	Davies and Hall 2007
Daphnia magna (<24h old)	Cladocera	US EPA	16.8	7	100	48h LC ₅₀	4395	102	Davies and Hall 2007
Daphnia magna (<24h old)	Cladocera	na	na	na	na	96h LC ₅₀ 4	3072	na	Dowden and Bennett 1965

Species (life stage)	Order	Guideline	Cl (mg/L)	Ca:Mg ratio	Hardness CaCO₃ (mg/L)	Endpoint & Duration	Effect value SO ₄ ²⁻ (mg/L)	Control SO ₄ ² (mg/L)	Reference
Daphnia magna (adult)	Cladocera	na	na	na	na	96h LC ₅₀ 4	426	na	Dowden and Bennett 1965
Daphnia magna (neonates)	Cladocera	EPS	na	na	25*	48h LC ₅₀	957	na	Davies 2002
Daphnia magna (neonates)	Cladocera	EPS	na	na	50*	48h LC ₅₀	1768	na	Davies 2002
Daphnia magna (neonates)	Cladocera	EPS	na	na	75*	48h LC ₅₀	3155	na	Davies 2002
Daphnia magna (neonates)	Cladocera	EPS	na	0.7	25	48h LC ₅₀	1285	na	Davies 2002
Daphnia magna (neonates)	Cladocera	EPS	na	3.8	25	48h LC ₅₀	1571	na	Davies 2002
Daphnia magna (neonates)	Cladocera	EPS	na	7	25	48h LC ₅₀	1993	na	Davies 2002
Daphnia magna (neonates)	Cladocera	EPS	na	0.7	100	48h LC ₅₀	3146	54	Davies 2002
Daphnia magna (neonates)	Cladocera	EPS	na	3.8	100	48h LC ₅₀	3839 ⁵	na	Davies 2002
Daphnia magna (neonates)	Cladocera	EPS	na	7	100	48h LC ₅₀	4414	115	Davies 2002
Hyalella azteca (juvenile)	Amphibods	EPS	na	na	80	96h EC ₅₀	2461 ⁵	45	Elphick et al. 2011
Hyalella azteca (7-14 d old)	Amphibods	ASTM	25	1.41	100*	96h LC ₅₀	1900	na	Soucek 2007b
Hyalella azteca (7-14 d old)	Amphibods	ASTM	25	1.41	500*	96h LC ₅₀	4000	na	Soucek 2007b
Hyalella azteca (7-14d old)	Amphibods	ASTM	1.9	0.88	94	96h LC ₅₀	512	90	Soucek and Kennedy 2005
Hyalella azteca (7-14d old)	Amphibods	ASTM	33.9	3.25	107	96h LC ₅₀	2855	59	Soucek and Kennedy 2005
Hyalella azteca (2-9d old)	Amphibods	US EPA	na	3	25*	96h LC ₅₀	569	na	Davies and Hall 2007
Hyalella azteca (2-9d old)	Amphibods	US EPA	na	3	50*	96h LC ₅₀	1448	na	Davies and Hall 2007
Hyalella azteca (2-9d old)	Amphibods	US EPA	na	3	75*	96h LC ₅₀	1580	na	Davies and Hall 2007
Hyalella azteca (2-9d old)	Amphibods	US EPA	na	3	123*	96h LC ₅₀	3144	na	Davies and Hall 2007
Hyalella azteca (2-9d old)	Amphibods	US EPA	na	3	250*	96h LC ₅₀	5259	na	Davies and Hall 2007
Hyalella azteca (2-9d old)	Amphibods	US EPA	2.4	0.7	100	96h LC ₅₀	2101	58	Davies and Hall 2007
Hyalella azteca (2-9d old)	Amphibods	US EPA	2.4	1.8	100	96h LC ₅₀	2240 ⁵	58	Davies and Hall 2007
Hyalella azteca (2-9d old)	Amphibods	US EPA	2.4	7	100	96h LC ₅₀	2725	58	Davies and Hall 2007
Hyalella azteca (7-11d old)	Amphibods	ASTM	5	3.2	84	96h LC ₅₀	2084 ⁵	52	Soucek et al. 2015
Hyalella azteca (7-11d old)	Amphibods	ASTM	25	3.2	84	96h LC ₅₀	1882	52	Soucek et al. 2015
Hyalella azteca (7-11d old)	Amphibods	ASTM	50	3.2	84	96h LC ₅₀	1919	52	Soucek et al. 2015
Hyalella azteca (2-9d old)	Amphibods	EPS	na	na	100*	96h LC ₅₀	29715	43	Davies 2002
Hyalella azteca (2-9d old)	Amphibods	EPS	na	na	250*	96h LC ₅₀	4864	109	Davies 2002

Invertebrates- Insecta										
Chironomus tentans (10d old)	Diptera	US EPA	1.9	0.8	94	48h LC ₅₀	14134	90	Soucek and Kennedy 2005	
Chironomus dilutus (larvae)	Diptera	ASTM	9.5	1.7	100	96h EC ₅₀	5992	20	Wang et al. 2016a	
Culex sp. (larvae)	Diptera	na	na	na	na	48h LC ₅₀ 4	9122	na	Dowden and Bennett 1965	
Neocleon triangulifer (nymph)	Ephemeroptera	ASTM	na	na	99	96h LC ₅₀	1227	57	Soucek and Dickinson 2015	
Tricorythus sp.	Ephemeroptera	na	na	na	69.4	96h LC ₅₀	446	na	Goetsch and Palmer 1997	
Invertebrates- Mollusca										
Idioteuthis latipinna	Teuthida	na	na	na	na	48h LC ₅₀ 4	10808	na	Dowden and Bennett 1965	
Lampsilis abrupta (juveniles)	Unionoida	ASTM	9.5	1.7	100	96h EC ₅₀	2362	20	Wang et al. 2016a	
Lampsilis siliquoidea (juvenile)	Unionidae	ASTM	na	na	106	96h EC ₅₀	2325	na	Wang et al 2016b	
Ligumia recta	Unionoida	USEPA	na	na	92	96h LC ₅₀	1483	na	US EPA 2010	
Lymnaea sp. (eggs)	Basommatophora	na	na	na	na	96h LC ₅₀ 4	2401	na	Dowden and Bennett 1965	
Margaritifera falcata (juvenile)	Unionidae	ASTM	na	na	106	96h EC ₅₀	1378	na	Wang et al 2016b	
Megalonaias nervosa (juvenile)	Unionidae	ASTM	na	na	103	96h EC ₅₀	2279	na	Wang et al 2016b	
Megalonaias nervosa	Unionoida	USEPA	na	na	92	96h LC ₅₀	3378	na	US EPA, 2010	
Sphaerium simile (juvenile)	Verioida	ASTM	1.9	0.88	94	96h LC ₅₀	2078	90	Soucek and Kennedy 2005	
Utterbackia imbecillis (juvenile)	Unionidae	ASTM	na	na	103	96h EC ₅₀	2709	na	Wang et al 2016b	
Algae							•			
Nitzschia linearis (marine)	Bacillariales	na	na	na	na	120h LC ₅₀ ⁴	1284	na	Patrick et al. 1968	
Pseudokirchneriella subcapitata	Sphaeropleales	EPS	na	na	10*	72h EC ₅₀	1430	6	Elphick et al. 2011	
Pseudokirchneriella subcapitata	Sphaeropleales	EPS	na	na	80*	72h EC ₅₀	2742	45	Elphick et al. 2011	
Pseudokirchneriella subcapitata	Sphaeropleales	EPS	na	na	320*	72h EC ₅₀	2510	182	Elphick et al. 2011	
Pseudokirchneriella subcapitata	Sphaeropleales	na	na	na	na	96h EC ₅₀	1054	na	Simmons 2012	
Aquatic plants										
Lemna minor	Alismatales	na	na	na	na	48h EC ₅₀	2264	na	Simmons 2012	

1 = potassium concentration approximately 1 mg/L. 2 = data used to calculate geometric mean (some data was excluded after reliability evaluation and due to high potassium concentration of 3 mg/L). 3 = potassium concentration approximately 3 mg/L. 4 = TLm tabulated as LC50. 5 = data used to calculate geometric mean (based on hardness, chloride concentrations, and Ca:Mg ratio. * = Studies investigating hardness as a modifying factor.

Species (life stage)	Order	Guideline	Cl (mg/L)	Ca:Mg ratio	Hardness CaCO₃ (mg/L)	s Endpoint & Duration		Effect value SO4 ²⁻ (mg/L)	Control SO ₄ ²⁻ (mg/L)	Reference
Fish										
Oncorhynchus kisutch (embryos)	Salmoniformes	EPS	na	na	15	Development	10d NOEC	825	na	Elphick et al. 2011
Oncorhynchus mykiss (embryos)	Salmoniformes	EPS	na	na	15	Development	21d NOEC	205	na	Elphick et al. 2011
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	40*	Growth	7d NOEC	595	23	Elphick et al. 2011
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	80*	Growth	7d NOEC	760	45	Elphick et al. 2011
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	160*	Growth	7d NOEC	1300	91	Elphick et al. 2011
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	320*	Growth	7d NOEC	820	182	Elphick et al. 2011
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	50*	Growth	7d EC ₁₀	931	74	PESC 2013
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	100*	Growth	7d EC ₁₀	1397	125	PESC 2013
Pimephales promelas (larvae)	Cypriniformes	EPS	na	na	250*	Growth	7d EC ₁₀	2969	470	PESC 2013
Pimephales promelas (embryos)	Cypriniformes	ASTM	9.5	1.7	100	Biomass	34d EC ₁₀ 1	92.5	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	9.5	1.7	100	Biomass	34d EC ₁₀ 1	53	20	Wang et al. 2016a
Amphibans										
Pseudacris regilla (tadpoles)	Anura	OECD	na	na	15*	Survival/ growth	21d NOEC	1075	na	Elphick et al. 2011
Pseudacris regilla (tadpoles)	Anura	OECD	na	na	80*	Survival/ growth	21d NOEC	978	45	Elphick et al. 2011
Invertebrates- Crustacean										
Ceriodaphnia dubia (neonates)	Cladocera	EPS	na	na	40*	Reproduction	7d NOEC	<150	23	Elphick et al. 2011
Ceriodaphnia dubia (neonates)	Cladocera	EPS	na	na	80*	Reproduction	7d NOEC	645 ²	45	Elphick et al. 2011
Ceriodaphnia dubia (neonates)	Cladocera	EPS	na	na	160*	Reproduction	7d NOEC	775	91	Elphick et al. 2011
Ceriodaphnia dubia (neonates)	Cladocera	EPS	na	na	320*	Reproduction	7d NOEC	420	182	Elphick et al. 2011
Ceriodaphnia dubia (neonates)	Cladocera	EPA	na	na	44	Reproduction	7d NOEC	500	21	Lasier and Hardin 2009
Ceriodaphnia dubia (neonates)	Cladocera	EPA	na	na	44	Reproduction	7d NOEC	250	21	Lasier and Hardin 2010
Ceriodaphnia dubia	Cladocera	ASTM	1.9	0.88	92	Reproduction	7d EC ₅₀	1148	90	Soucek 2007a
Ceriodaphnia dubia	Cladocera	ASTM	33.9	3.25	92	Reproduction	7d EC ₅₀	1458	59	Soucek 2007a

Table S2. Chronic ecotoxicity studies for sulfate (na= not available).

Species (life stage)	Order	Guideline	Cl (mg/L)	Ca:Mg ratio	Hardness CaCO ₃ (mg/L)	Endpoint & Duration		Effect value SO ₄ ²⁻ (mg/L)	Control SO ₄ ²⁻ (mg/L)	Reference
Ceriodaphnia dubia (neonates)	Cladocera	EPA	na	na	93	Reproduction	7d NOEC	1000 ²	46	Lasier and Hardin 2009
Ceriodaphnia dubia (neonates)	Cladocera	ASTM	1.9	0.88	92	Survival/ reproduction	7d LOAEC	2216	90	Soucek 2007a
Ceriodaphnia dubia (neonates)	Cladocera	ASTM	33.9	3.25	92	Survival/ reproduction	7d LOAEC	3000	59	Soucek 2007a
Ceriodaphnia dubia (neonates)	Cladocera	ASTM	1.9	0.88	92	Reproduction	7d LOAEC	1000	90	Soucek 2007a
Ceriodaphnia dubia (neonates)	Cladocera	ASTM	9.5	1.7	100	Reproduction	7d EC ₁₀ 1	466 ²	20	Wang et al. 2016a
Ceriodaphnia dubia (neonates)	Cladocera	ASTM	9.5	1.7	100	Reproduction	7d EC ₁₀ 1	532 ²	20	Wang et al. 2016a
Hyalella azteca (juvenile)	Amphibods	EPS	na	na	80	Survival/ reproduction	14d NOEC	1637	81	Elphick et al. 2011
Hyalella azteca	Amphibods	na	na	na	50*	Growth	28d EC ₁₀	1170	34	PESC 2013
Hyalella azteca	Amphibods	na	na	na	100*	Growth	28d EC ₁₀	682	57	PESC 2013
Hyalella azteca	Amphibods	na	na	na	250*	Growth	28d EC ₁₀	437	164	PESC 2013
Invertebrates- Mollusca										
Lampsilis abrupta (juveniles)	Unionoida	ASTM	9.5	1.7	100	Dry weight	28d EC ₁₀ 1	319.5	20	Wang et al. 2016a
Invertebrates- Rotifers					-					
Brachionus calyciflorus (<4h old)	Rotifer	na	na	na	40*	Reproduction	48h NOEC	950	23	Elphick et al. 2011
Brachionus calyciflorus (<4h old)	Rotifer	na	na	na	80*	Reproduction	48h NOEC	510	45	Elphick et al. 2011
Brachionus calyciflorus (<4h old)	Rotifer	na	na	na	160*	Reproduction	48h NOEC	560	91	Elphick et al. 2011
Brachionus calyciflorus (<4h old)	Rotifer	na	na	na	320*	Reproduction	48h NOEC	1800	182	Elphick et al. 2011
Invertebrates- Insecta										
Chironomus dilutus (larvae)	Diptera	ASTM	9.5	1.7	100	Dry weight	7d EC ₁₀ 1	488.5	20	Wang et al. 2016a
Chironomus dilutus (larvae)	Diptera	ASTM	9.5	1.7	100	Reproduction	41d EC ₁₀ 1	1293.5	20	Wang et al. 2016a
Neocleon triangulifer (nymph)	Ephemeroptera	na	na	na	99	% pre-emergent nymph	36d NOEC ³	129	57	Soucek and Dickinson 2015
Neocleon triangulifer (nymph)	Ephemeroptera	na	na	na	99	No of eggs per female	36d EC ₁₀ 1	140.5	57	Soucek and Dickinson 2015
Algae										
Pseudokirchneriella subcapitata	Sphaeropleales	EPS	na	na	10*	Growth	72h NOEC	1100	6	Elphick et al. 2011

Species (life stage)	Order	Guideline	Cl (mg/L)	Ca:Mg ratio	Hardness CaCO₃ (mg/L)	Endpoint & Du	ration	Effect value SO ₄ ²⁻ (mg/L)	Control SO4 ²⁻ (mg/L)	Reference
Pseudokirchneriella subcapitata	Sphaeropleales	EPS	na	na	80*	Growth	72h NOEC	1200	45	Elphick et al. 2011
Pseudokirchneriella subcapitata	Sphaeropleales	EPS	na	na	320*	Growth	72h NOEC	1300	182	Elphick et al. 2011
Pseudokirchneriella subcapitata	Sphaeropleales	na	na	na	na	Flourescence	96h EC ₁₀	426	na	Simmons 2012
Pseudokirchneriella subcapitata	Sphaeropleales	na	na	na	na	Cell density	96h EC ₁₀	810	na	Simmons 2012
Higher aquatic plants										
Fontinalis antipyretica	Hypnales	na	na	na	15	Growth	21d NOEC	603	na	Elphick et al. 2011
Fontinalis antipyretica	Hypnales	na	na	na	15	Growth	21d NOEC	654	na	Elphick et al. 2011
Fontinalis antipyretica	Hypnales	na	na	na	15	Clorofyll	21d NOEC	145	na	Elphick et al. 2011
Fontinalis antipyretica	Hypnales	na	na	na	15	Clorofyll	21d NOEC	654	na	Elphick et al. 2011
Fontinalis antipyretica	Hypnales	na	na	2.4	19	Shoot length	21d NOEC	200	na	Davies 2007
Fontinalis antipyretica	Hypnales	na	na	6.7	26	Shoot length	21d NOEC	600	na	Davies 2007
Fontinalis antipyretica	Hypnales	na	na	6.7	105	Shoot length	21d NOEC	1000	na	Davies 2007
Fontinalis antipyretica	Hypnales	na	na	2.4	19	Growth	21d NOEC	400	na	Davies 2007
Fontinalis antipyretica	Hypnales	na	na	67	26	Growth	21d NOEC	1000	na	Davies 2007
Fontinalis antipyretica	Hypnales	na	na	6.7	105	Growth	21d NOEC	200	na	Davies 2007
Fontinalis antipyretica	Hypnales	na	na	2.4	19	Chlorophyll reduction	21d NOEC	200	na	Davies 2007
Fontinalis antipyretica	Hypnales	na	na	6.7	26	Chlorophyll reduction	21d NOEC	400	na	Davies 2007
Fontinalis antipyretica	Hypnales	na	na	6.7	105	Chlorophyll reduction	21d NOEC	800	na	Davies 2007
Lemna minor	Alismatales	EPS	na	na	50*	Frond increase	7d EC ₁₀	2143	103	PESC 2013
Lemna minor	Alismatales	EPS	na	na	100*	Frond increase	7d EC ₁₀	2243	217	PESC 2013
Lemna minor	Alismatales	EPS	na	na	250*	Frond increase	7d EC ₁₀	2314	248	PESC 2013
Lemna minor	Alismatales	na	na	na	na	No. of live thalli	7d EC ₁₀	345	na	Simmons 2012

1 = EC20 divided by 2, tabulated as EC10. 2 = data used to calculate geometric mean. 3 = NOEC was not reported, the concentration below the statistically significant concentration was set as NOEC. * = Studies investigating hardness as a modifying factor.

Species (life stage)	Order	Guideline	Cl (mg/L)	Ca:Mg ratio	Hardness CaCO ₃ (mg/L)	Endpoint &	Duration	Effect value SO4 ²⁻ (mg/L)	Control SO₄²- (mg/L)	Reference
Oncorhynchus mykiss (eyed eggs)	Salmoniformes	EPS	na	na	6	Survival	21d LC ₁₀	175.4	2	Kennedy 2012
Oncorhynchus mykiss (eyed eggs)	Salmoniformes	EPS	na	na	50	Survival	21d LC ₁₀	299.5	44	Kennedy 2012
Oncorhynchus mykiss (eyed eggs)	Salmoniformes	EPS	na	na	100	Survival	21d LC ₁₀	419.2	89	Kennedy 2012
Oncorhynchus mykiss (eyed eggs)	Salmoniformes	EPS	na	na	250	Survival	21d LC ₁₀	673.7	206	Kennedy 2012
Oncorhynchus mykiss (fry)	Salmoniformes	EPS	na	na	6	Survival	30d LC ₁₀	363.2	2	Kennedy 2012
Oncorhynchus mykiss (fry)	Salmoniformes	EPS	na	na	50	Survival	30d LC ₁₀	367.9	44	Kennedy 2012
Oncorhynchus mykiss (fry)	Salmoniformes	EPS	na	na	100	Survival	30d LC ₁₀	771.7	89	Kennedy 2012
Oncorhynchus mykiss (fry)	Salmoniformes	EPS	na	na	250	Survival	30d LC ₁₀	1224.7	206	Kennedy 2012
Oncorhynchus mykiss (embryos)	Salmoniformes	EPS	11.7	5.3	50	Survival	21d LC ₁₀	123 ¹	28	PESC 2013
Oncorhynchus mykiss (embryos)	Salmoniformes	EPS	24	5.3	100	Survival	21d LC ₁₀	162 ¹	53	PESC 2013
Oncorhynchus mykiss (embryos)	Salmoniformes	EPS	60	5.3	250	Survival	21d LC ₁₀	191 ¹	140	PESC 2013
Oncorhynchus tshawytscha	Salmoniformes	EPS	na	na	250	Survival	21d LC ₁₀	1287	189	PESC 2013
Pimephales promelas (embryos)	Cypriniformes	ASTM	9.5	1.7	100	Survival	34d LC ₁₀	430	20	Wang et al. 2016a
Pimephales promelas (embryos)	Cypriniformes	ASTM	9.5	1.7	100	Survival	34d NOEC	245	20	Wang et al. 2016a
Ceriodaphnia dubia (neonates)	Cladocera	EPS	na	na	40	Survival	7d NOEC	610	23	Elphick et al. 2011
Ceriodaphnia dubia (neonates)	Cladocera	EPS	na	na	80	Survival	7d NOEC	1250	45	Elphick et al. 2011
Ceriodaphnia dubia (neonates)	Cladocera	EPS	na	na	160	Survival	7d NOEC	1300	91	Elphick et al. 2011
Ceriodaphnia dubia (neonates)	Cladocera	EPS	na	na	320	Survival	7d NOEC	1450	182	Elphick et al. 2011
Ceriodaphnia dubia (neonates)	Cladocera	ASTM	9.5	1.7	100	Survival	7d LC ₂₀	1592	20	Wang et al. 2016a
Ceriodaphnia dubia (neonates)	Cladocera	ASTM	9.5	1.7	100	Survival	7d LC ₂₀	1751	20	Wang et al. 2016a
Hyalella azteca	Amphibods	na	na	na	50	Survival	28d LC ₁₀	1430	na	PESC 2013
Elliptio complanata	Unionoida	ASTM	na	na	50	Survival	28d LC ₁₀	139 ²	34	PESC 2013
Elliptio complanata	Unionoida	ASTM	na	na	250	Survival	28d LC ₁₀	676	158	PESC 2013
Lampsilis abrupta (juveniles)	Unionoida	ASTM	9.5	1.7	100	Survival	28d LC ₂₀	1759	20	Wang et al. 2016a
Chironomus dilutus (larvae)	Diptera	ASTM	9.5	1.7	100	Survival	7d LC ₂₀	>6160	20	Wang et al. 2016a
Neocleon triangulifer (nymph)	Ephemeroptera	ASTM	na	na	99	% survival to nymph stage	21d EC ₂₀	289	57	Soucek and Dickinson 2015

Table S3. Ecotoxicity studies with long-term exposure and endpoint survival (na= not available).

1 = Suggests higher toxicity than Kennedy et al. (2012). However, Kennedy et al. (2012) used an increased sample size and received a more robust result. 2 = Suggest low toxicity at hardness 50, but was not included in the derivation due to large confidence interval (12-1640).

11. SUPPORTIVE INFORMATION – Reliability and relevance evaluations

The reliability and relevance of studies by Wang et al. (2016a) and Soucek and Dickinson (2015) were evaluated using the CRED evaluation method (Moermond et al. 2016) (table S4). The studies were assessed to be of sufficient reliability and relevance for use in the EQS derivation, although, some of the values from Wang et al. (2016a) were eliminated (because of technical error and reduced survival in control).

	Wang et al. 20	16a			Soucek and Dickin	ison 2015
	CHRONIC	Comments	ACUTE	Comments	CHRONIC	Comments
Species	P. promelas (embryos)	Study 2011 (test 1, 2 and 3). Data from test 1 and 2 excluded (see criteria 3).	P. promelas (embryos)	Study 2012 and 2013	N. triangulifer	
Endpoint	Survival	Other endpoints investigated: Biomass and growth (but uncertainties in the results)	Survival		(1) % of pre- emergent nymph (development delay) (2) % survival to pre- emergent nymph stage	Other endpoints investigated: No. of days to pre-emergent nymph stage (NOEC 209 mg/L); %e emergence (NOEC 209 mg/L); pre-egg laying weight (NOEC 359 mg/L); No. Of eggs per female (not significant); No of eggs per original female (EC20 281mg/L, no dose-response)
Effect value (mg/L)	LC10: 430	NOEC: 245, LOEC:468, LC20:477 (This study also calculated LC50 for 7days of 645 mg/L (test 3))	LC50: 625.55	Geometric mean of 645, 718 and 600 (potassium ≈1 mg/L)	NOEC: 129	MATC: 164 (LOEC= 209), EC20: 170 MATC: 164 (LOEC=209), EC20: 289
Reliability evaluatio	n	· · · · · · · · · · · · · · · · · · ·				
Is the guideline method (OECD/ISO) or modified guideline used?	Yes	ASTM E1241-05 and E729-96	Yes	ASTM E1241-05 and E729-96	No	Based on DOI: 10.1016/j.chemosphere.2014.04.092, with several modifications and DOI: 10.1016/j.chemosphere.2014.04.096.
Is the test performed under GLP conditions?	No		No		No	
		Poor survival in test 1 (data not used); technical error in test 2 (data not used); 87% control survival in test 3; (data used); No		95% control survival (2012), 98% control survival (2013); Constant conditions; DO ok; Results based		"Control survival was evaluated as no. of organisms surviving to pre-emergent
If applicable, are validity criteria fulfilled (e.g., control survival,		information about temperature between chambers; DO ok; Analytic measures performed.		on measured concentration Chambers were held in temperature-controlled baths, no		nymph stage". "Percentage of survival to pre-emergent nymph stage was high for the controls and up to 51 mg/L".
growth)?	Partly fulfilled.	Chambers were held in	Partly fulfilled	information about if temperatures	Yes	≥80 %

Table S4. Evaluation of the reliability and relevance of Wang et al. (2016a) and Soucek and Dickinson (2015) using the CRED evaluation method (Moermond et al. 2016).

		temperature-controlled baths, no		varied over time or between		
		information about if temperatures		chambers.		
		varied over time or between		chambers.		
		chambers.				
Are appropriate		chambers.				
controls performed						
(e.g., solvent control,						
negative and positive						
control)?	Yes		Yes		Yes	
Is the test substance						
identified with name or						
CAS number? Are test						
results reported for the						
appropriate						
compound?	Yes		Yes		Yes	
Is the purity of the test						
substance reported?						
Or, is the source of the						
test substance						
trustworthy?	Yes	99%; Sigma- Aldrich	Yes	99%; Sigma-Aldrich	Not reported	
If a formulation is used						
or if impurities are						
present: Do, other						
ingredients in the						
formulation exert an						
effect? Is the amount	No					
of test substance in the	formulation/		No formulation/		No formulation/	
formulation known?	mixture, etc.		mixture, etc.		mixture, etc.	
Are the organisms well						
described (e.g., scientific name,						
weight, length, growth,						
age/Life stage,						
strain/clone, gender if						
appropriate)?	Yes	<24h old	Yes	<24h old	Yes	Age: <24h,
appropriate	163	N2411 UIU	165	N2411 UIU	165	Age. 72411,

Are the test organisms						
from a trustworthy						
source and						
acclimatized to test						Source: Stroud Water Research Center
conditions? Have the						Clone #WCC-2; Tests were conducted in
organisms not been		Cultured in control water; US		Cultured in control water; US		Duluth 100 hard water, this was also
pre-exposed to test		Geological survey Columbia		Geological survey Columbia		the mayfly culture water, and eggs
compound or other		environmental research center in		environmental research center in		were stored in this water, so no
unintended stressors?	Yes	Columbia, MO, USA.	Yes	Columbia, MO, USA.	Yes	acclimation was required.
Is the experimental	165		Tes		Tes	
-						
system appropriate for the test substance.						
						Static/renewal. Renewal Days 0–4:
taking into account its		Flow through 250				
physicochemical	Vee	Flow-through, 250	Vee	Chatia yan ayyal	Vee	none; day 5—end of test: three times
characteristics?	Yes	ml/chamber/30min	Yes	Static-renewal	Yes	weekly
Is the experimental						
system appropriate for						Townships all dischard sources
the test organism (e.g.,						Temperature, pH, dissolved oxygen,
choice of medium or						alkalinity, and hardness were
test water, feeding,						25.0±0.38C, 8.4±0.1mg/L, 7.3±0.4
water characteristics,						(lowest value= 6.1)
temperature,						mg/L, 83 ± 3 mg/L as CaCO ₃ , and 95 ± 4
light/dark conditions,		Temp 25; DO 7,7-8,4; pH 8,2;				mg/L as CaCO ₃ , respectively; Diatoms
pH, oxygen content)? Have conditions been		Hardness 103-106; Photoperiod		Temp 25; DO 7,3 ; pH 7,9;		used to feed mayflies included
	N	16:8 Fed 3 times a day (2	N	hardness 108 (2012); DO 8,2; pH	N	Mayamea sp. and Nitzschia sp. ;
stable during the test?	Yes	times/day on weekends)	Yes	8,2; hardness 110 (2013)	Yes	Photoperiod 16:8
Were exposure						
concentrations below						
the limit of water						
solubility (taking the						
use of a solvent into						
account)? If a solvent is						
used, is the solvent						
within the appropriate						
range and is a solvent	Vac		Vee		Vee	
control included?	Yes		Yes		Yes	
Is correct spacing		Manage and the time of the		Mean concentrations: 19 (control),		Nominal SO42– concentrations were as
between exposure		Mean concentrations: 19		121, 249, 476, 830 and 1580		follows: 59 mg/L (control), 136 mg/L,
concentrations		(control), 74, 132, 245, 468 and		(2012); 20 (control), 108, 242, 442,		214 mg/L, 369 mg/L, 679 mg/L, and
applied?	Yes	958.	Yes	781 and 1555 (2013)	Yes	1300 mg/L.

Is the exposure						
duration defined?	Yes	34d	Yes	14 days (2012) and 7 days (2013)	Yes	30 days
Are chemical analyses						
adequate to verify						
concentrations of the				Renewed once on day 2.		"For the Na2SO4 test, measured sulfate
test substance over the				Measured on day 0, 7 and 14		averaged 97% of nominal (range, 90–
duration of the study?	Yes	% of nominal: 93-120 %	Yes	(2012)	Yes	106%)" (ion chromatography)
Is the biomass loading						
of the organisms in the						
test system within the		30 embryos/ 1000ml later		30 embryos/ 280 ml (1000ml on		
appropriate range		removed to 7L chambers (flow-		day 5) (2012), no information		2 organisms/ 30ml (larger volume from
(e.g., <1 g/L)?	Yes	through)	Unclear	about 2013	Yes	day 14)
Is a sufficient number						
of replicates used? Is a						
sufficient number of						
organisms per replicate						
used for all controls						
and test						10 replicates with 2 organisms per
concentrations?	Yes	4 replicates with 30 embryos	Yes	2-3 replicates	Yes	replicate
Are appropriate		Toxicity response analysis		Toxicity response analysis		
statistical methods		program; Dunett's test; Steel's		program; Dunett's test; Steel's		Fisher's exact test, Tukey's honest
used?	Yes	test; TOXSTAT; SAS/STAT.	Yes	test; TOXSTAT; SAS/STAT.	Yes	significant difference, TRAP software
Is a concentration-						
response curve						
observed? Is the						
response statistically		Possible to determine dose-		Possible to determine dose-		
significant?	Yes	response.	Yes	response	Yes	Possible to determine dose-response
Are sufficient data						
available to check the						
calculation of						
endpoints and (if						
applicable) validity						
criteria (e.g., control						
data, concentration-						
response curves)?	Yes		Yes		Partly fulfilled	
Reliability results		R2		R2		R2

Relevance evaluatio	n					
Is the species tested						
relevant for the						
compartment under						
evaluation?	Yes		Yes		Yes	
Are the organisms						
tested relevant for the						
tested compound?	Yes		Yes		Yes	
Are the reported						
endpoints appropriate						
for the regulatory						
purpose?	Yes	Survival	Yes		Yes	
Are the reported						
endpoints appropriate						
for the investigated						
effects or the mode of						
action of the test						
substance?	Yes	No known mode of action	Yes	No known mode action	Yes	No known mode of action
						Endpoint (1): development delay,
						Unclear; Endpoint (2): Yes, survival
						relevant on population level (but
Is the effect relevant						endpoint do not fulfil criteria for
on a population level?	Yes		Yes		Partly fulfilled	chronic effect values)
Is the magnitude of						
effect statistically						
significant and						
biologically relevant for		Survival relevant on a population				
the regulatory purpose		level (but endpoint do not fulfil				
(e.g., EC10, EC50)?	Yes	criteria for chronic effect values).	Yes		Yes	
Are appropriate life		Juveniles and larvae was not as				
stages studied?	Yes	sensitive as embryos (same study)	Yes		Yes	
Are the experimental						
conditions relevant for						
the tested species?	Yes		Partly fulfilled		Yes	
Is the exposure						
duration relevant and						
appropriate for the						
studied endpoints and						
species?	Yes		Yes		Yes	

If recovery is studied, is						
this relevant for the						
framework for which						
the study is evaluated?	Not studied		Yes		Not studied	
In case of a						
formulation, other						
mixture, salts, or						
transformation						
products, is the						
substance tested						
representative and						
relevant for the	No					
substance being	formulation/		No formulation/		No formulation/	
assessed?	mixture etc.		mixture, etc.		mixture, etc.	
Is the tested exposure						
scenario relevant for						
the substance?	Yes		Yes		Yes	
Is the tested exposure						
scenario relevant for						
the species?	Yes		Yes		Yes	
Relevance results		C1		C1		C1

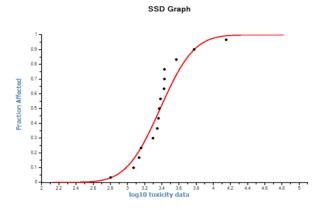
12. SUPPORTIVE INFORMATION – Added risk and SSD results

Scenario 1: Hardness dependent MAC-EQS, based on studies investigating hardness as a modifying factor

Species (life stage)	Hardness CaCO₃ (mg/L)	Endpoint & Duration	Effect value SO4 ²⁻ (mg/L)	SO4 ²⁻ control (mg/L)	Effect value added SO4 ²⁻ (mg/L)	Reference
Hardness 10-25						
H. azteca	25	96h LC ₅₀	596	20	576	Davies and Hall 2007
Hardness 40–50						
P. promelas (larvae)	50	7d LC ₅₀	957	74	883	PESC et al. 2013
Hardness 75–100						
H. azteca	75	96h LC50	1580	40	1540	Davies and Hall 2007
Hardness >160						
P. promelas	250	7d LC ₅₀	3178	470	2708	PESC 2013

Table S5 LC_{50 added} used in the deterministic derivation for MAC-EQS_{added} (scenario 1: hardness depended EQS).

Scenario 2: MAC-EQS based on studies with hardness≈ 100 mg CaCO₃/L


Table S6. $L(E)C_{50 added}$ used in the deterministic and probabilistic derivation of MAC-EQS_{added} (scenario 2: hardness \approx 100 mg CaCO₃/L).

Species (life stage)	Hardness CaCO₃ (mg/L)	Endpoint & Duration	Effect value SO4 ²⁻ (mg/L)	SO₄ ²⁻ control (mg/L)	Effect value added SO4 ²⁻ (mg/L)	Reference
Pimephales promelas (embryos)	102-110	7d LC ₅₀	652 ¹	20	633	Wang et al. 2016a
Ceriodaphnia dubia (neonates)	100	48h EC ₅₀	2441	20	2421	Wang et al. 2016a
<i>Daphnia magna</i> (<24h, neonates)	100	48h LC ₅₀	3823	102	3721	Geometric mean
Hyalella azteca (2-11d old)	80-100	96h L(E)C50	2415	43-58	2665	Geometric mean
Chironomus dilutus (larvae)	100	96h EC ₅₀	5992	20	5972	Wang et al. 2016a
Chironomus tentans (10d old)	94	48h LC ₅₀	14134	90	14044	Soucek and Kennedy 2005
Neocleon triangulifer (nymph)	99	96h LC ₅₀	1227	57	1170	Soucek and Dickinson 2015
Lampsilis abrupta (juveniles)	100	96h EC ₅₀	2362	20	2342	Wang et al. 2016a
Lampsilis siliquoidea (juvenile)	106	96h EC ₅₀	2325	20*	2305	Wang et al 2016b
Ligumia recta	92	96h LC50	1483	40*	1443	US EPA 2010
Margaritifera falcata (juvenile)	106	96h EC ₅₀	1378	20*	1358	Wang et al 2016b
Megalonaias nervosa (juvenile)	103	96h EC ₅₀	2279	20*	2229	Wang et al 2016b
Sphaerium simile (juvenile)	94	96h LC ₅₀	2078	90	1988	Soucek and Kennedy 2005
Utterbackia imbecillis (juvenile)	103	96h EC ₅₀	2709	20*	2689	Wang et al 2016b
Pseudokirchneriella subcapitata	80	72h EC50	2742	45	2697	Elphick et al. 2011

* Sulfate concentrations in control medium estimated.

Type of HC5	Value (mg/L)	log10(Value) (mg/L)	Description
LL HC5	386.07	2.59	lower estimate of the HC5
HC5	725.20	2.86	median estimate of the HC5
UL HC5	1085.88	3,04	upper estimate of the HC5
sprHC5	2.81	0.45	spread of the HC5 estimate

Table S7. HC5 results for probabilistic derivation of MAC-EQS_{added} (scenario 2: hardness \approx 100 mg CaCO₃/L).

Figure S1. SSD graph for MAC-EQS-added (scenario 2: hardness \approx 100 mg CaCO₃/L). *P. promelas* was the most sensitive species. HC5 was set to 725.20. The normality was rejected in the Kolmogorov-Smirnov test at 0.05-0.1 significance level.

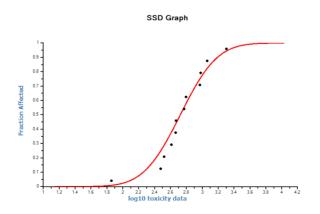

Scenario 2: AA-EQS based on studies with hardness \approx 100 mg CaCO₃/L

Table S8. NOEC_{added} and L(E)C_{10 added} used in the deterministic and probabilistic derivation of AA-EQS_{added} (scenario 2: hardness \approx 100 mg CaCO₃/L).

Species (life stage)	Hardness CaCO₃ (mg/L)	Endpoint & Duration		Effect value SO4 ²⁻ (mg/L)	SO₄²- control (mg/L)	Effect value added SO4 ²⁻ (mg/L)	Reference
Oncorhynchus mykiss (eyed eggs)	100	Survival	31d LC ₁₀	419	89	330	Kennedy et al. 2012
Pimephales promelas (embryos)	100	Survival	34d LC ₁₀	430	20	410	Wang et al. 2016a
<i>Pseudacris regilla</i> (tadpoles)	80	Survival/ growth	21d NOEC	978	45	933	Elphick et al. 2011
<i>Ceriodaphnia dubia</i> (neonates)	80-100	Reproduction	7d NOEC	632	20-46	589	Geometric mean
Hyalella azteca	100	Growth	28d EC10	682	57	625	PESC 2013
<i>Lampsilis abrupta</i> (juveniles)	100	Dry weight	28d EC10	320	20	300	Wang et al. 2016a
Chironomus dilutus (larvae)	100	Dry weight	7d EC ₁₀	489	20	469	Wang et al. 2016a
<i>Neocleon triangulifer</i> (nymph)	99	Development/ survival	36d NOEC	129	57	72	Soucek and Dickinson 2015
Brachionus calyciflorus (<4h old)	80	Reproduction	48h NOEC	510	45	465	Elphick et al. 2011
Pseudokirchneriella subcapitata	80	Growth	72h NOEC	1200	45	1155	Elphick et al. 2011
Fontinalis antipyretica	105	Shoot length	21d NOEC	1000	40	960	Davies 2007
Lemna minor	100	Frond increase	7d EC ₁₀	2243	217	2026	PESC 2013

Table S9. HC5 results for probabilistic derivation of AA-EQS_{added} (scenario 2: hardness \approx 100 mg CaCO₃/L).

Type of HC5	Value (mg/L)	log10(Value) (mg/L)	Description
LL HC5	53.31	1.73	lower estimate of the HC5
HC5	128.20	2.11	median estimate of the HC5
UL HC5	217.26	2.34	upper estimate of the HC5
sprHC5	4.08	0.61	spread of the HC5 estimate

Figure S2. SSD graph for AA-EQS_{added} (scenario 2: hardness \approx 100 mg CaCO₃/L). *N. triangulifer* was the most sensitive species. HC5 was set to 128.20. The normality was accepted at all significance levels in all tests.

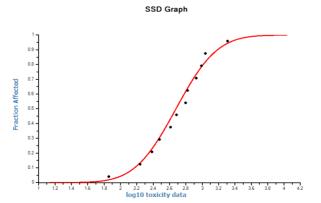

Scenario 3: AA-EQS based on realistic worst-case data for Sweden

Table S10. NOEC_{added} and $L(E)C_{10 added}$ used in the deterministic and probabilistic derivation of AA-EQS_{added} (scenario 3: realistic worst-case data).

Species (life stage)	Hardness CaCO₃ (mg/L)	Endpoint & Duration		Effect value SO₄ ²⁻ (mg/L)	SO₄ ²⁻ control (mg/L)	Effect value added SO₄ ²⁻ (mg/L)	Reference
Oncorhynchus mykiss (eyed eggs)	6	Survival	31d LC ₁₀	175	2	173	Kennedy et al. 2012
Pimephales promelas (embryos)	100	Survival	34d LC ₁₀	430	20	410	Wang et al. 2016a
Pseudacris regilla (tadpoles)	15-80	Survival/ growth	21d NOEC	1025	45	980	Elphick et al. 2011
Ceriodaphnia dubia (neonates)	40-44	Reproduction	7d NOEC	266	21-23	244	Geometric mean
Hyalella azteca	50-100	Growth	28d EC ₁₀	893	34-57	848	PESC 2013
<i>Lampsilis abrupta</i> (juveniles)	100	Dry weight	28d EC ₁₀	320	20	300	Wang et al. 2016a
Chironomus dilutus (larvae)	100	Dry weight	7d EC ₁₀	489	20	469	Wang et al. 2016a
<i>Neocleon triangulifer</i> (nymph)	99	Development / Survival	36d NOEC	129	57	72	Soucek and Dickinson 2015
Brachionus calyciflorus (<4h old)	40-80	Reproduction	48h NOEC	696	23-45	662	Elphick et al. 2011
Pseudokirchneriella subcapitata	10	Growth	72h NOEC	1100	6	1094	Elphick et al. 2011
Fontinalis antipyretica	15	Growth	21d NOEC	628	6*	622	Elphick et al. 2011 Geometric mean
Lemna minor	50	Growth	7d EC10	2143	103	2040	PESC 2013

* Sulfate concentrations in control medium estimated.

Type of HC5	Value (mg/L)	log10(Value) (mg/L)	Description
LL HC5	39,50	1,60	lower estimate of the HC5
HC5	102,31	2,01	median estimate of the HC5
UL HC5	181,31	2,26	upper estimate of the HC5
sprHC5	4,59	0,66	spread of the HC5 estimate

Figure S3. SSD graph for AA-EQS_{added} (scenario 3: realistic worst-case data). *N. triangulifer* was the most sensitive species. HC5 was set to 102.31. The normality was accepted at all significance levels in all tests.

Department of Environmental Science and Analytical Chemistry (ACES)

Stockholms universitet 106 91 Stockholm Tel 08-16 20 00 www.su.se info@su.se

