

Practical mitigation measures in Norwegian water bodies to reduce pressure

- good practice examples from several sectors

Helga Gunnarsdóttir and Steinar Sandøy Norwegian Environment Agency

The bright side of the moon ③

The black side of the moon \otimes

Pressures on water bodies in Norway

The 10 most important pressures on watercourses in Norway

■Mye ■Middels ■Lite ■Ukjent

Effect: High - Medium - Low - Unknown

Morsa watershed – characteristics and challenges

• Watershed area:

- 6 9 municipalities, 2 counties,
- 6 40 000 inhabitants,
- 690 km2
- The lake, serving 65 000 people with drinking water and recreation
- Recreational area for the enlarged catchment
- **6** Land use:
 - 6 80% forest,
 - 16% agriculture
- 6 Main problems:
 - Too heavy loads of P
 - Highly eutrophic
 - Toxic phytoplankton blooms
- 1999: The Morsa river basin organisation was established

Morsa river basin management strategies

- 6 Management based on knowledge –> public understanding and consensus
- 6 Objective and neutral analysis Environmental institutes 2001
 - Status, objectives, measures and costs
- Plans in every municipality 2002
 - For wastewater in towns and in rural areas (according to local regulations)
- Environmental program for the agriculture 2002
 - Partly regional and partly municipal
- **6** River Basin Management plan for Morsa adopted by local authorities 2003
 - Based on the analysis and plans for municipalities and agriculture
- 6 Increased focus on the Western part of the lake from 2005
 - Case environmental contracts

Primary measures in agriculture

- Reduced tilling in autumn
- Reduced use of P-fertilizer
- Constructed wetlands/sed. ponds
- Buffer and vegetation zones
- Environmental plan/contract for each farm

Waste water treatment – scattered households some results

- In 1999:
 - 2300 household with little waste water treatment
- In 2012:
 - 2100 households had installed new waste water treatment or been connected to a pipeline
- In 1999:
 - Loads from scattered households to lake Vansjø 2.3 tons of P
- In 2012:
 - Loads from scattered households to lake Vansjø 0,5 tons of P

The lake Vansjø 2000 - 2006 and 2008 - 2015

Giftige blågrønne alger farget vestre og nedre Vansjø grønn, og førte til badeforbud fra 2001-2007. Foto: Eva Skarbøvik/Bioforsk

MILIØ-

DIREKTORATET

Lykkelige badeengler i Nesparken i Moss sommeren 2008. Faksimile fra www.moss-avis.no

Some cases to facilitate migration -roads

- Small waterfalls at the outlet of the culvert
- High water velocity inside
- Lack of a pool downstream
- Stones etc. that prevent migration

Čase 1 New threshold and pool Nykvåg river in Lofoten

Photo/case: Knut Aune Hoseth NVE/NPRA

Čase 2 Aspen trunks Storelva in Steigen Nordland

1.5 m

Photo/Case: NPRA

Case 3 Four fish tubs and 10 thresholds Sæveli creek in Aust-Agder

Pressures: hydropower

Impacts on:

- 15 of the 20 highest waterfalls
- 70 % of the no. of river basins
- 17 % of river stretch
- 30 % of lake area

Ecologic effect:

- Reduced (or no) flow, variation in water level
- Habitats for fish and insects, plants, birds
- Landscape, recreation, tourism

MILJØ-DIREKTORATET

HYMO alteration in Aurlandselva (Hydropower)

Tiltak - Harving 20.000 m² siden 2009

Figur 1 Harving av pakket og fast bunnsubstrat (armeringslag) ndf. E 16 bro 2011.

Figur 2 Harvingen sett under vann. Gravemaskinen mistet tenner i skuffen grunnet det harde armeringslaget.

Figur 3 Pakket og fast bunnsubstrat med få hulrom. Steinene kunne ikke snus med håndmakt (armeringslag).

Figur 4 Samme substratet etter masse nye hulrom tilgjengelig for fisk.

Mitigation in River Aurlandselva: 500 m³ of new spawning gravel

Before After

tøreren

To optimize mitigation measures by adding new spawning gravel you need at least knowledge about biology and hydrology

If fish stocking is still needed to achieve the objectives: we try to use fish eggs -In some rivers we use offspring of native strain kept in gene bank for endangered wild Atlantic salmon stocks

- When the objective is to get good status for fish and a good fishery without stocking:
 - We often need a combination of environmental flow and habitat measures.
 - In rivers with "environmental flow" habitat mitigation measures alone might be sufficient.
- If not, we have to continue fish stocking,
 - until the impact of the regulation (flow and habitat) is reduced to a level that result in a fish population big enough to have a fishery

Status implementation of measures (december 2012)

www.miljødirektoratet.no