WG4 New Methods/Technology Mapping of marine habitats

Hege Gundersen Arnt-Børre Salberg Kasper Hancke

Therese Harvey Kai Sørensen

Norwegian Institute for Water Research

SeaBee

Norwegian infrastructure for drone-based research, mapping and monitoring in the coastal zone Duration: 2020-2025 + 2025-2030? (5+5 years)

Seabee Norway

Aim of infrastructure project

SeaBee will establish a national center for drone-based services for use in coastal and aquatic research, mapping and monitoring for future environmental challenges

KELPMAP (2022-2024)

For Norwegian Environment Agency and Norwegian Space Center

Norsk

Assignment: To investigate whether it is possible to map kelp forests with drones and scale up using satellite images

DIREKTORATE'

orsk Roms

Norwegian Space Agency

Norsk institutt for vannforskning

Hagen et al/SeaBee

Process

1. Ground truth

3. Annotation

4. Analysis

5. Upscaling

What can we map using drones?

Vegetation

- Kelp
- Seaweed
- Eelgrass
- ...

Fauna

- Mussel
- Barnacles
- •

Abiotic habitat

- Sand
- Stone (sand, gravel, boulder, rock)
- Deep areas
- ...

- Mostly interested in biotic habitats, but all objects in the picture are relevant – even those on land
- Seabed down to approx. 10 m (or as deep as the light can reach)

SeaBee's habitatklasser (v1.0)

NIC

We already have good experience with many of these, others remain to be tried out.

Some can be translated into national Norwegian NiN types

HYPSO-1 Hyperspectral Cube-satellite

- Developed at NTNU
- Part of the ØKOSAT project
- Particularly interesting for cyanobacteria signatures
- Used in conjunction with hyperspectral in situ data from land or autonomous vehicles
- Reflectance data + water samples

Upscaling using the satellite imagery

Upscaling:

The prediction map based on the drone images was used in the next round as training data for the satellite images

- 1. VHR
- 2. Sentinel-2

Due to reduced resolution and limited pixel count, upscaling could only be done at level 1

Horizon EU: Use of new technologies for more cost-effective mapping and monitoring in Europe

OPPSKALERING VHR (2 m)

Great potential for improvement, including annotating deep regions and land and merging datasets

OPPSKALERING VHR (10 m)

Great potential for improvement here too...

Upscaling using the satellite imagery

Upscaling:

The prediction map based on the drone images was used in the next round as training data for the satellite images

- 1. VHR
- 2. Sentinel-2

Sentinel-2 18. August 2022

T32WPT T32WPT 20220818T104631_TCI_10m.jp2

T32WPU T32WPU_20220818T104631_TCI_10m.jp2

Not easy to find days without clouds and other disturbances for such large areas...

Pleiades (VHR)

1. Juli 2018

COPERNICUS PANDA R1C1 COPERNICUS PANDA R2C2

Ended up with a fairly old photo – but I guess the habitats haven't changed much

MIL

OPPSKALERING VED BRUK AV SATELLITBILDER

